
Processing of Top-K Most Influential Location
Selection Queries

Rui Zhang, Jin Huang, Zeyi Wen

Department of Computing and Information Systems
University of Melbourne, Australia

rui@csse.unimelb.edu.au

Jian Chen

School of Software Engineering
South China University of Technology, China

Kerry Taylor

Commonwealth Scientific and Industrial Research Organization (CSIRO),
Australia

Zhen He

Department of Computer Science
La Trobe University, Australia

A Technical Report

June 2013

Abstract

Facility location selection queries help to evaluate the popularity of different
facility locations for a to-be-added facility. Such queries have wide applications
in marketing and decision support systems. In this report, we propose and
investigate a new type of queries aiming to retrieve the top-k most influential
locations from a candidate set in a given context of customers and existing fa-
cilities. The influence in the query, which models the potential popularity of
the new facility, is defined as the number of reverse nearest customers the new
facility can attract if it was added. Specifically, given a candidate set C, an
existing facility set F , and a customer set M , the proposed query returns the
top-k candidates in C with the greatest influences. The most naive solution
for the query employs sequential scan on all data sets and is thus expensive
and not scalable to large data sets. To improve the solution, two R-Tree based
branch-and-bound algorithms are presented. One of them, named Estimation
Expanding Pruning (EEP), uses distance metrics between nodes to tighten the
search space, while the other, named Bounding Influence Pruning (BIP), relies
on half plane styled geometric properties to achieve the same goal. Both algo-
rithms follow the best-first access strategy guided by “hints” computed during
the pruning and meanwhile gradually refine these “hints”. BIP generally out-
performs EEP since it avoids repeated estimations on F and M . Yet due to the
extensively accesses on R-tree indexes, the complexity in the worst case of both
algorithms is unsatisfactory, causing their performance to degrade dramatically
when the data set grows. To achieve better scalability, an algorithm named
Nearest Facility Circle (NFC) is proposed. Rather than computing all the in-
fluence relationships from scratch as EEP and BIP, NFC first pre-computes the
influence relationships between customers and existing facilities, then indexes
these relationships with an R-Tree, finally processes the query using multiple
cheap point enclosure queries. Furthermore, a NFC join (NFCJ) algorithm is
propose to construct an R-tree on candidate set and share the common traversal
cost of point enclosure query by using R-tree join algorithm. We theoretically
and experimentally compare all proposed algorithms. The results show that
NFCJ is the the best solution for the proposed query.

Chapter 1

Introduction

A common problem for many business and organizations is to find a suitable
place to establish a new facility. For instance, McDonald’s may want to intro-
duce a new restaurant into a booming community to compete with other fast
food restaurants. A wireless carrier may want to construct a new base station
or hotspot for wireless Internet access to a densely populated area to improve
its service quality. A scientific organization may want to select a location for a
new environmental sensor to capture particular mobile wildlife as the materials
for research. A city planner may want to find where to introduce a new public
infrastructure such as a drop-in clinic to a flourishing suburb. In most cases,
the selection of locations must be made from a given candidate set, e.g., tru-
lia.com lists more than 43,100 locations for sale in Los Angele, CA, USA [30] and
Soufun.com lists more than 339,330 locations for rental in Beijing, China [26].
For business directors, one of the most important indicators used to evaluate a
candidate location is the number of customers the newly added facility could
attract. In this report, we investigate the problem of finding the top-k candi-
date locations that attract the largest number of customers, where k is a user
define integer. The top-k locations are of interest because in real applications
there are additional factors such as safety and popularity of a brand in a region
(for example, fast food is relatively unpopular in suburbs with mostly European
habitants). These may be important factors that will affect the decision but are
difficult to quantify. Therefore, top-k results returned by the query can serve as
the primary candidates based on which further consideration can be made. In
this study, we assume a customer is attracted by his or her nearest facility and
the business has the knowledge of customer and existing facility distributions
from surveys or past sales records.

An example corresponding to the above problem is shown in Figure 1.1,
where circles and squares represent customers and facilities, respectively. To dis-
tinguish existing facility locations and candidate locations, we use white squares
to denote the existing facilities and black squares to denote the candidate fa-
cilities. In the figure, the candidate locations are labeled as c1, c2, c3, ..., c6. A
customer is connected to a candidate location with a dashed line if and only if

1

c1
c2

c3
c4

c5

c6

customer existing facility new facility

Figure 1.1: c1, c2, c3, c4, c5, c6 are of influence values 4, 6, 3, 5, 2, 1, respectively.

the customer would be influenced by a new facility established at that candidate
location. For each candidate location ci, the number of customers it attracts
can be computed by counting the number of customers connected to it with a
dashed line. In this example, the numbers corresponding to c1, c2, c3, c4, c5, c6
are 4, 6, 3, 5, 2, 1. If user inputs three as the parameter k, then the query would
return the answer set c2, c4, c1.

Please note the number of customers an existing facility location can attract
may be reduced by a newly added facility. This follows the idea of competition
as McDonald’s may want to attract customers from other restaurants. Therefore
in this case the existing facilities may represent a competing company like KFC.
Another example is that a wireless carrier adds a new base station to take load
off existing base stations since existing ones are out of capacity or ill-balanced.
After adding the new facility, this situation can be improved. In an extreme case,
a company may even consider replacing the existing facility with the new facility
due to the maintenance cost of keeping the existing facility. In all scenarios, our
method can easily address the requirements.

The aforementioned facility location selection problem aims at maximizing
the influence of the new facilities, where the influence is defined as the number
of customers who perceive the new facility as their nearest facility. In a previ-
ous poster paper [15], we formulate the above described problem as the top-k
most influential location selection query. In this report, we detail the solutions
for answering this query and evaluate their performance with experiments and
analysis.

The remainder of the report is organized as follows. Chapter 2 defines the
related concepts and top-k most influential location selection query. Chapter 3
reviews previous studies on related topics. Chapter 4 progressively describes

2

sequential scan, estimation expanding pruning, bounding influence pruning,
and nearest facility location algorithms with the analysis on their complexities.
Chapter 5 presents the experimental results. Finally, the report is concluded in
Chapter 6.

3

Chapter 2

Preliminary Concepts and
Studied Problem

In this chapter, we will first introduce the related concepts and definition of
location influence, based on which we then propose a novel query to select the
optimal location for a new facility.

2.1 Location Influence

We present formal definition of reverse nearest neighbor and location influence
first. Table 2.1 lists frequently used symbols in the report.

Definition 1 (Reverse Nearest Neighbors). The customers who perceive a fa-
cility as their nearest facility are reverse nearest neighbors of this facility. Let
d(f,m) denote the Euclidean distance between f and m, min(m,F) denote the
minimum distance between m and any f ∈ F , f.RNN(F,M) denote the re-
verse nearest neighbors of f ∈ F , then f.RNN(F,M) = {m ∈ M |d(m, f) =
min(m,F)}.

Note this definition presents the bichromatic version of the reverse nearest
neighbors problem, where objects are divided into two categories. The reverse
nearest neighbors of an object in such scenario always come from the opposite
category [16].

When evaluating the popularity of a facility, counting the number of its re-
verse nearest neighbors would be a sensible indicator because in many scenarios
such as marketing and city planning, specific individuals are of less interest than
the overall number of customers. We have:

Definition 2 (Location Influence). The influence of a location is the num-
ber of its reverse nearest neighbors. Let If be the influence of facility f , then
If (F,M) = |f.RNN(F,M)|.

4

Table 2.1: Frequently used symbols

Symbol Explanation

C,F,M Sets of candidate, existing facility and customer locations, respectively

c, f,m A candidate location, an existing facility and a customer, respectively

p A point in the data space

tC , tF , tM R-trees on C, F and M , respectively

nC , nF , nM A node in tC , tF and tM , respectively

rC , rF , rM The MBRs of nodes nC , nF , and nM , respectively

If , Ic The influence of an existing facility and a candidate facility, respectively

IuC The upper bound of influence for all c indexed by a node nC

I lC The lower bound of influence for all c indexed by a node nC

Iδ The kth greatest influence value of candidates seen so far

LC , LF , LM The priority list of nodes nC , nF , and nM , respectively

nC .SM , nF .SM The unpruned customers of nodes nC and nF , respectively

nM .SC , nM .SF The unpruned candidates and existing facilities of node nM , respectively

nC .R The influence region of a node nC

nC .SF The relevant existing facilities set of a node nC

nC .S
+
F The outer relevant existing facilities set of a node nC

nC .S
−
F The inner relevant existing facilities set of a node nC

5

f1

f2

f3

customer facility

Figure 2.1: If1 = 4; If2 = 2, If3 = 5

Figure 2.1 demonstrates an example of facility influence, where circles de-
note customers and squares denote facilities. In the figure, the dash lines are
perpendicular bisectors between each pair of facilities. Easily, If1 = 4, If2 = 2,
If3 = 5.

Here we assume each customer location contributes the same 1 unit influ-
ence. Yet, our problem setting can be generalized to take variable units into
consideration. For the sake of brevity, we follow the 1 unit setting for the rest
of this report.

Instead of focusing on the specific reverse nearest neighbors, Definition 2
can be used as the criteria for ranking facilities based on their attractiveness
for various applications. The influence based location problem has wide appli-
cations in fields like commercial marketing and community planning. Selecting
an optimum location is of great interest when different locations offer diverse
potential profits. In addition, the influence location selection problem generally
faces massive data sets in the real world where there can be numerous facilities
and customers. This calls for an efficient solution to make the query viable for
integration into decision making systems.

2.2 Influence Maximization for A New Facility

When selecting the location for a new facility, we aim to find the one with highest
potential to be popular among all existing facilities. Using location influence
as an indicator, it is possible to select the optimum location for a to-be built
facility. Specifically, we can evaluate the potential popularity of a location by
adding a new facility on it, and then computing the influence of that new facility.
The influence of the new facility turns out to be an indicator of desirability of
the location. Obviously, the more customers the new facility can influence, the
better the location. This leads to the following definitions:

Definition 3 (Potential Influence). Let C denote a candidate set of available
locations for a to-be built facility. The potential influence I ′c of a candidate
location c ∈ C is the influence it earns when it is added into the existing facility
location set, i.e. I ′c = Ic(F

∪
{c},M).

6

f1

f3

f2

c1

c2

c3

customer existing facility new facility

Figure 2.2: C = {c1, c2, c3}; Ic1 = 2, Ic2 = 4, Ic3 = 3; Top-2 influential
candidates are c2, c3

In the remainder of the report, when there is no ambiguity, we use If to
denote If (F,M) and Ic to denote Ic(F

∪
{c},M) for brevity.

Definition 4 (Top-k Most Influential Locations). Given a set C of candidate
locations for the new facility, the top-k most influential locations are k locations
in C with the largest potential influence.

If multiple candidate locations have the same potential influence value, there
might be ties when selecting the top-k candidates. To resolve this, we arbitrarily
choose some of them as the answer. For example, when more than k candidates
are of same largest potential value, we simply pick k of them as the answer.

Figure 2.2 gives an example for this potential influence. In the figure, the cir-
cles denote customers, the white squares denote existing facilities, black squares
denote potential new facilities. As illustrated, if c1 is added into existing fa-
cilities, it can influence two customers from f1 and f3 (customers with white
arrows pointing to c1); if c2 is added, it can influence four customers from
f1, f2, and f3; if c3 is added, it can influence three customers from f2 and f3
. Therefore, the potential influence of c1, c2, and c3 are 2, 4, 3, respectively.
According to definition 4, the top-2 most influential locations among C are c2
and c3.

7

Chapter 3

Related Work

3.1 Reverse Nearest Neighbor

Korn and Muthukrishnan [16] first proposed the reverse nearest neighbor (RNN)
query and define the RNNs of an object o to be the objects whose respective
nearest neighbor is o. In the same paper [16], Korn and Muthukrishnan propose
an RNN-tree based solution to the RNN query, where the RNN-tree is an R-Tree
[14] variant that indexes nearest neighbor (NN) circles of the data objects rather
than the data objects themselves. Here, the NN circle of an object is defined to
be a circle that centers at o with its radius being the distance between o and
o’s nearest neighbor. Based on the NN circles, to find the RNN of an object o
only requires checking which objects’ NN circles enclose o. Applying this idea
to our top-k most influential query gives the NFC algorithm. However, the
RNN-tree based solution has two major drawbacks. One is that it requires the
extra maintenance of an RNN-tree. The other is that it requires precomputing
the NN circles. Therefore, this solution can not handle objects with frequent
updates. To solve the first problem, Yang and Lin [37] propose to integrate the
NN circle information into an R-Tree, so that the resultant R-Tree can be used
to process RNN queries as well as other common types of queries, thus avoiding
the maintenance of an extra RNN-tree. To solve the second problem, Stanoi et
al. [27] propose an approximation-refinement framework to compute the RNNs
on the fly, so that no precomputation is needed. While these methods work well
for processing a single RNN query, they are not designed to compute RNNs for
a large number of objects at the same time, which is one of the key difficulties
in many facility location problems. Thus, the RNN problem can be viewed as
a sub problem of the facility location problems. Recent progress on improving
the efficiency of answering RkNN query can be found in [29], [34], and [1].
Techniques proposed for similarity (nearest neighbor) search [17, 19, 20, 38, 41]
such as bulk loading index construction [3] and pre-computing key function
values for similarity search [9] can also be helpful in RNN search.

8

f1
f2

f3

Figure 3.1: Example of the MAXCOV problem

3.2 Location Distance Minimization

Min-dist facility location problems aim to minimize the average distance between
customers and their respective nearest facilities. Zhang et al. [39] propose to
find an optimal location c in a given region Q such that if a new facility is built
on c, the average distance between the customers and their respective nearest
facilities is minimized. Mouratidis et al. [18] study the k medoid query and the
k median query, which aim at finding a set C ′ (C ′ ⊂ C) of k locations from a
set C to minimize the average distance between locations in C ′ and locations
in C. Similar to our problem settings, given client set and existing facility set,
Qi et al. [22, 23] propose a new min-dist location selection query which aims
to pick the best location from a candidate set to minimize the average distance
between a client and its nearest facility. Besides also introducing the NFC algo-
rithm to solve the problem, they propose a novel method to answer the query
without the need to construct a spatial index in advance. The performance
of this method is verified to be close to the best algorithm via extensive ex-
periments. All these studies are distance based optimization problems and are
different from our influence based optimization problem because they focus on
optimizing the overall performance of all the facilities while our problem focuses
on optimizing the performance of one particular facility. Hence, their solutions
are not applicable.

3.3 Location Influence Maximization

Max-inf facility location problems aim at maximizing the influence values of
the locations, where the influence of a location c is defined by the number of
customers c attracts. Cabello et al. [5] propose a facility location problem
based on the MAXCOV optimization criterion, which is to find regions in the
data space that maximize the numbers of RNNs for the points in these regions.
Figure 3.1 gives an example, where the gray region is the optimal region. Points
in this region have three RNNs, while any point outside of this region has at

9

Table 3.1: Existing studies on location influence maximization problem

Study Input Output Influence Definition Space Solution

[5] M Regions Number of RNNs ℓ2 NFC

[35] M , F Top-k f ∈ F Number of RNNs ℓ2 Branch and bound

[33, 32] M , F Regions for Number of RNNs ℓp Region-to-point

a new facility transformation

[36] M , F Regions for Number of m ∈ M within ℓ2 Greedy and grid

a new facility distance of their (1 + α)NN partitioning

[7, 8] M , F Index structure Number of RkNN ℓ2 Voronoi cell

[28] M , F Regions for Number of RNN ℓ2 NFC and

new facilities constrained by capacity heuristic pruning

[13] M , F Network segments Number of RNNs Spatial Branch and bound

for new facilities network

[25] M , F Top-k f ∈ F Number of RNNs Path Branch and bound

trajectory

[42] M , F Top-k f ∈ F Expectation of RNNs ℓ2 Branch and bound

[11] M , F , Top c ∈ C Number of RNNs ℓ1 Branch and bound

C as a region

[12] M , Q, d Top f ̸∈ Q Number of m ∈ M ℓ2 Branch and bound

within distance of d

most two RNNs. They introduce the concept of nearest location circle (NFC)
to solve the problem, where the NFC of a customer m is a circle centered at m
with its radius being the distance between m and m’s existing nearest facility.
To find the solution for the MAXCOV criterion based problem is to find the
regions that are enclosed by the largest number of NFCs, which requires complex
computations. The study give a theoretical analysis, but no efficient algorithm
is presented.

Xia et al. [35] propose the top-t most influential sites problem and a branch
and bound algorithm to solve it. This problem finds the top-t most influential
existing sites within a given region Q. It does not consider any candidate loca-
tions for a new facility. That is to say, in their work, the influence computation
is based on all existing facilities, and the influence comparison is between all
existing facilities. In our work, the influence computation is based on the set
obtained by adding each candidate location into the existing facility set, and
the influence comparison is between all candidate locations. The only possi-
ble way to reuse their solution is to first add each candidate into the existing
set to compute the top-t influential locations in this new set and then rank all
candidate locations by their influences to return the top-k locations. Yet be-
cause the added candidate location is not necessarily among the top-t answer
of its corresponding new set, the adapted solution cannot guarantee the correct

10

answer unless we set t to the size of the new set, i.e., |F | + 1. Hence, there is
no straightforward way to adapt their solution to solve our problem.

One highly related problem is also studied in [33]. Yet the expected answer
for their most influential location query is a region where the new facility being
added could earn the same maximum influence values. To achieve an efficient
solution, they take advantage of region-to-point transformation to tighten the
search space dramatically. The proposed method is further extended in [32] to
handle similar problem in any ℓp − norm space of two and three dimensional-
ity. However, since they focus on selecting the optimal region rather then
selecting a set of optimal candidates from a given data set, and the
candidates in our problem may not locate in the returned optimal region in
their solution, their solutions do not directly apply.

Another similar study is [36], where assumption that customers will only
visit their nearest facilities is relaxed such that all facilities within the distance
of (1+α)d from the customer might be visited, where d is the distance between
a customer and her nearest neighbor and α is a user input parameter indicating
how much further a user would like to travel for a non-nearest facility. Fur-
thermore, the study also gives a greedy solution for finding the k locations for
adding k new facilities simultaneously to gain the overall maximum influence. A
grid-based technique is used to divide the space and return the grid with high-
est potential influence as the answer. Again, since the problem setting does not
consider the candidate set, applying their method to our problem will not give
direct solutions since we would need to return multiple grids until k candidates
are found enclosed in these returned grids.

Du et al. [11] propose to find a point from a continuous candidate region
that can maximize the influence value. They use ℓ1 distance and have a strong
assumption that all the roads are either horizontal or vertical. We consider
ℓ2 distance, which is a more general problem setting. More importantly, we
consider a candidate location set instead of a candidate region. This is a
more practical problem setting because in many real applications, we can only
choose from some candidate locations (e.g. a McDonald’s restaurant can only be
opened at a place for lease or sale, rather than anywhere in a region). Cheema
et al. [7] propose to find an influence zone for a query location c, where the
customers inside this zone form exactly the reverse k nearest neighbor (RkNN)
query result of c. Here, a RkNN query retrieves all the data points that have
c as one of their k nearest neighbors. They use a method to compute Voronoi
cells on the fly for the query location to obtain its RkNNs. The proposed
method is further rigorously analyzed in [8], and shown to be available when
the dimensionality is more than two and there is data update. Compared to
this problem, our problem focuses on the number of RNNs of the candidate
locations instead of specific locations of the RNNs. Recently, a similar
influential location selection problem with capacity limit is studied [28]. The
major difference between this study and the study presented in this paper is
twofolds: first, the capacity of facility is out of consideration in the study here,
therefore the optimization goal is for the new facility only instead of for all
facilities to achieve maximum influence; only facilities in the candidate set is

11

considered here, while the study in [28] attempts to find all locations in the
data space that would achieve the optimization. This difference makes the
solution there inapplicable to our problem.

While most studies deal with problem in either Euclidean space or ℓp−norm
space, the location influence maximization problem is also studied in spatial
networks. Ghaemi et al. [13] tackle the problem where both query objects and
sites reside on the spatial network. Shang et al. [25] propose to represent the
facility locations by path trajectories. This way, the most accessible locations
could be selected based on the number of path trajectories that perceive the
location as their nearest facilities. When data sets contain uncertain instances,
Zheng et al. [42] formulate the most influential locations as those with highest
expected ranks. To efficiently answer the query, the authors propose several
pruning rules and a divide-and-conquer paradigm to eliminate search space in
terms of locations to be computed and the number of possible worlds needed to
be checked. Clearly, none of these studies consider an additional candidate set
for the to-be added facility, making their solutions inapplicable to our problem.

Unlike the above problems, which define the influence values based on the
cardinalities of RNN sets, Gao et al. [12] propose to find the optimal location f
outside a given region Q based on the number of customers in Q whose distances
to f is within a given threshold d. We consider neither the specific region Q nor
the given threshold d in our study, which makes their solution inapplicable to
our problem.

Overall, Table 3.1 summarizes above studies based on their inputs, outputs,
assumptions on formulation the problem and their proposed solutions.

12

Chapter 4

Solutions

In this chapter, we will comprehensively study four solutions for top-k most
influential location selection query. To begin with, we follow the definition of
the problem and present a rather naive solution, which is based on performing
a sequential scan (SS) on all data sets. Although this solution returns correct
answer, its efficiency is unsatisfactory since it accesses the data sets intensively
and performs repeated computations. To improve the efficiency, we propose two
R-Tree based branch-and-bound solutions. The R-Tree is a widely used index
structure designed specifically for spatial data[14]. Each spatial object is asso-
ciated with a Minimum Bounding Rectangle (MBR). Multiple MBRs are then
grouped as nodes in upper levels of the tree, which are again associated with big-
ger MBRs bounding all MBRs in the corresponding group. To perform queries
on an R-Tree, typically we traverse the tree using the MBR corresponding to
a node as the indicator to decide whether its children of that node should be
accessed. Both proposed methods index all three data sets with R-Trees or its
variant, and rely on estimating the influence bounds for candidate locations to
tighten the search space. One of them, named Estimation Expanding Pruning
(EEP), uses distance metrics between MBRs to gradually refine the estimation
during traversing all three trees. The other algorithm, named Bounding Influ-
ence Pruning (BIP), maintains a heap for nodes in the tree corresponding to
candidate locations and takes advantages of Voronoi-cell styled geometric prop-
erties to reduce distance computations. Both EEP and BIP are of complexity
O(n log n) in the best case, which is better than the O(n2) complexity of SS. Yet,
the worst case complexities of EEP and BIP are O(n4) and O(n3), respectively,
which are far from competitive. To overcome this, we further study another
R-Tree based solution. This solution indexes the nearest facility circle (NFC)
instead of the location for each customer and transforms the most influential
location selection query into multiple points enclosure queries on that R-Tree.
Additionally, we may construct a R-tree for the candidate set and employ join
algorithm on R-tree to share the cost of point queries which result to NFC join
(NFCJ) algorithm. Both NFC and NFCJ achieve O(n log n) in the best case
and O(n2) in the worst case, while NFCJ outperforms NFC in terms of I/O

13

operations. Hence, NFCJ is the best solution for the most influential location
selection query.

4.1 Sequential Scan

As defined in Definition 4, the problem can be solved in a straightforward man-
ner following the idea in the definition. In order to select the k most influential
locations in the candidate set M , we first compute the exact influence for each
candidate location c ∈ C then simply return the k largest. The most naive
implementation of this idea is to use sequential scan to obtain the candidate
influence. For each candidate c, we obtain its influence value by adding it to
the existing facility set F and scanning the customer set M to find reverse near-
est neighbors, namely ms which have c as their nearest facility. This requires
|C||F ||M | number of scans.

Algorithm 1: Sequential Scan (SS)

Input: k, customer set M , existing facility set F , candidate location set
C

Output: TopInf(k, M, F, C)

1 foreach m ∈M do
2 foreach f ∈ F do
3 if m.nfd > d(f,m) then
4 m.nfd← d(f,m)

5 foreach c ∈ C do
6 foreach m ∈M do
7 if m.nfd > d(c,m) then
8 Ic++

9 Sort C by Ic
10 TopInf(k, M, F, C) ← First k locations in C

Notice that the set M is repeatedly scanned for existing facilities f ∈ F
when computing influence for each c. These repeated scans can be avoided by
first scanning the customer set M and the existing facility F , then storing the
distance between each c and its nearest facility for further use. Let this distance
be called nearest f acility d istance (nfd). When computing the influence for
candidate c, we can scan M again to find which m ∈ M perceives c as the
nearest facility by simply checking whether the distance between c and m is
within the nfd corresponding to m. Due to the fact this method only needs
sequential scans on data sets, we name it the Sequential Scan algorithm.

The algorithm can be summarized as Algorithm 1, where m.nfd is the near-
est facility distance of m and d(a, b) is the distance between location a and
location b. As shown in the pseudo-code, it is easy to find that the sequential
scan algorithm requires |F ||M | + |C||M | distance computations, leading to a

14

time complexity of O(n2).
The sequential scan algorithm is far from efficient of solving top-k most

influential location problems due to the fact it relies on intensive scans on all
of three data sets and computes unnecessary influence for weakly influential
candidates, which are of less interest in the problem. Also, repeated scans on
set M is undesirable since in reality, this set tends to be the largest among all
sets. In following sections, we come up with two algorithms relying on heuristics
to prune search space and improve efficiency in terms of execution time.

4.2 Estimation Expanding Pruning

To prepare for the pruning of the search space, we index sets C, F with R-
Trees and M with an aggregate R-Tree for more efficient access and heuristic
operations. Let tC , tF , tM denote these R-Trees. Recalling that our problem
asks for top-k most influential locations, it is desirable to estimate the influence
for candidates before computing their exact influence and to use this information
to eliminate unpromising candidates at an early stage. This way, we can avoid
exhaustive computations by taking advantage of influence value distribution
among candidates.

In this section, we propose a distance based technique to help us estimate
the influence of candidate locations. The distances between customers and their
nearest existing facilities as well as the possible number of customers that could
be influenced by the candidate facility are estimated. With these estimations,
the solution traverses tC in a best first order determined by importance of that
node, which depends on both estimated influences and the number of candidates
the node’s Minimum Bounding Rectangle (MBR) encloses, to quickly find the
top-k candidates.

When an internal node of tC is accessed, each of its child nodes is evaluated
for its importance. Since this operation naturally expands the search space, we
call it the expanding operation on an index tree. tF and tM are also expanded so
that the estimations on distances and influences can be gradually refined, which
brings more effective pruning in return. As estimation and expanding opera-
tions play the major role in the solution, it is named the Estimation Expanding
Pruning (EEP) algorithm.

Trees tC , tF , tM are traversed in a best first order by maintaining priority
lists LC , LF , and LM , which contain entries corresponding to the to-be ac-
cessed nodes. These entries also record the importance values for the nodes
and some influence relation information presented by related entries in other
lists. Initially, only the roots of trees are stored in the corresponding lists. As
the traversal proceeds, lists are accessed in LM , LF , LC order, most important
entries in lists are expanded and entries corresponding to their child nodes are
re-inserted into the lists. The repeated accesses terminate when the top-k can-
didates have been found. Specifically, we maintain a sorted list for all computed
influence values in descending order. Once all upper bound IuC of influences for
nodes in the tree are smaller then the kth influence value in that list, no more

15

candidate location remaining in the tree could serve as the query answer since
none of them could have an influenced value greater than the kth computed one.
Hence, the algorithm could terminate at an early stage. Algorithm 2 shows the
high level algorithm of EEP.

Algorithm 2: Estimation Expanding Pruning (EEP)

Input: Root nodes rootM , rootF and rootC of the three trees
Output: TopInf(k, M, F, C)

1 Insert rootM , rootF and rootC into LM , LF and LC respectively
2 Initialize the influence relation information for the nodes in the three lists

3 while ∀nC ∈ LC , the kth largest computed Ic < IuC do
4 ProcessEntry(LM)
5 ProcessEntry(LF)
6 ProcessEntry(LC)

7 return TopInf(k, M, F, C)

On Lines 4-6 in Algorithm 2, the entries with greatest importance value
are selected, the corresponding nodes are expanded, and the importance values
and influence relation information of their child nodes are computed so that
promising nodes are re-inserted into the lists as entries while unpromising nodes
are discarded directly. Details for this procedure is given in Section 4.2.3. Before
taking a more detailed look, we will first give the definitions on hints used in the
procedure, which are stored in the entry with corresponding node. Specifically,
influence relation information is introduced in Section 4.2.1 and importance
values of nodes are defined in Section 4.2.2. The run-time complexity of EEP
is given in Section 4.2.4.

4.2.1 Influence relation information of nodes

The influence relation information of a node n ∈ t contains sets of nodes from
trees other than t which either potentially influence n if n represents customers
or potentially influenced by n if n represents facilities. These sets are named
influence relation sets. In addition, some distances between node n and nodes
in influence relation sets are also stored for efficient access and computation.
This information together helps in efficiently determining the importance of a
node, as described in Section 4.2.2, as well as pruning the search space when
processing entries, as elaborated in Section 4.2.3.

For brevity, in the remainder of the report, we denote nC , nF , and nM as
nodes in tC , tF , and tM , respectively; rC , rF , rM as the corresponding MBRs
of node nC , nF , nM , respectively.

Specifically, for nC , in order to estimate the influence for candidates en-
closed in its rC , a set named nC .SM is maintained as the set of nodes nM

which might be influenced by any c enclosed by rC . For nF , similar to that
for nC , a set nF .SM is maintained for estimating the influence of facility loca-

16

nC1

nC2

nC3

nM1

nM2

nM3

nF1

nF2

nF3

nC1.SM

nC2.SM

nC3.SM

nM1.SC

nM2.SC nM3.SC

nM1.SF

nM2.SF

nM3.SF

nF1.SM

nF2.SM

nF3.SM

Figure 4.1: An example for influence relation sets on list LC , LF , LM

tion represented by nF . For nM , two sets nM .SF and nM .SC are maintained.
Set nM .SF contains nF such that facility f enclosed by rF may influence any
customer m enclosed by rM . Similarly, set nM .SC contains nodes nC such
that candidate facility c enclosed by rC may influence any customer m enclosed
by rM . The method to determine these sets are elaborated in the later part
of this section. Figure 4.1 shows an example, where LC = {nC1, nC2, nC3},
LF = {nF1, nF2, nF3}, LM = {nM1, nM2, nM3}. As demonstrated in the fig-
ure, nC1.SM = {nM1, nM2}, nC2.SM = {nM1}, nC3.SM = {nM3}; nF1.SM =
{nM1, nM2}, nF2.SM = {nM3}, nF3.SM = {nM3}; nM1.SC = {nC1, nC2},
nM1.SF = {nF1}, nM2.SC = {nC1}, nM2.SF = {nF1}, nM3.SC = {nC3},
nM3.SF = {nF2, nF3}.

In order to compute the influence relation sets for a given node efficiently, we
introduce three distance metrics between nodes. Given two nodes, which are rep-
resented by their MBRs r1 and r2, theMinDist(r1, r2), and theMaxDist(r1, r2)
are respectively the minimum distance and the maximum distance between any
pair of points, one enclosed by r1 and the other in r2. The distance metric
MinExistDistr2(r1), which is introduced in [35], is defined as the minimum
upper bound of the distance for a point in r1 to its nearest point in r2. In other
words, it is possible to find the nearest point in r2 for any point in r1 within dis-
tance MinExistDistr2(r1). The influence relation sets nC .SM , nF .SM , nM .SC ,
and nM .SF can be determined with the following two theorems,

Theorem 1. Given nC ∈ LC , if ∃nF ∈ {nF |nM ∈ nC .SM , nF ∈ nM .SF },

MinDist(rM , rC) ≥MinExistDistrF (rM),

then for m enclosed by rM , m is not influenced by any c enclosed by rC .

Proof. We prove by contradiction. Suppose there is an m enclosed by rM who
is influenced by a specific c enclosed by rC , then according to Definition 2,
d(c,m) < MinExistDistrF (rM); but since d(c,m) ≥ MinDist(rM , rC) by the
definition ofMinDist, this contracts withMinDist(rM , rC) ≥MinExistDistrF (rM).

17

Theorem 2. Given nC ∈ LC , if ∀nF ∈ {nF |nM ∈ nC .SM , nF ∈ nM .SF },

MaxDist(rM , rC) < MinDist(rM , rF),

then for m enclosed by rM , for c enclosed by rC , m is influenced by c.

Proof. Since MaxDist(rM , rC) < MinDist(rM , rF), for any m, c, f enclosed
by nM , nC , and nF , respectively, d(m, c) < d(m, f). According to Definition
2, f enclosed by nF cannot influence m enclosed by nM due to the existence
of nC . Also, since nM .SF contains all nF s those could influence nM with the
absence of nC , m enclosed by nM can only be influenced by some c enclosed by
nC when c is added.

Theorem 1 states that if node nC is so far away from node nM that there
are other nF s much nearer to nM , then customer ms represented by nM are not
influenced by any candidate location c represented by nC due to the existence
of nF . To complete this intuition, Theorem 2 states that if node nC is so close
to node nM that no other nF s can be closer, then customers represented by nM

shall be influenced by some candidate location c in nC .
While Theorems 1 and 2 help determine the influence relations between

node pairs, we need to compute and store further distance thresholds for node
nM ∈ LM to improve efficiency in determining influence relation sets for nodes
in lists. Specifically, one of these needed thresholds, denoted as nM .dlow, stores
the lower bound for the distance between rM and its nearest rF , while the other,
denoted as nM .dupp, stores the upper bound for the distance between rM and
its nearest rF . Formally, we have

nM .dlow = min({MinDist(rM , rF)|∀nF ∈ nM .SF })

and
nM .dupp = min({MinExistDistrF (rM)|∀nF ∈ nM .SF }).

With the theorems and stored distances introduced above, three rules are
available for pruning and determining the influence relation set for child nodes
nM ′ of a given node nM . The rules are as follows:

1. Given nC , if ∃nM ∈ nC .SM , nM .dlow > MaxDist(rC , rM), then according
to Theorem 2, ∀m enclosed by rM and ∀c enclosed by rC , m is influenced
by c. Since we can ensure this customer in rM will be influenced, node nM

should be removed from nC .SM and nC should be removed from nM .SC

as well. In the meantime, for c enclosed by rC , I
l
C should be increased by

|OM |.

2. Given nC , if ∃nM ∈ nC .SM ,MinDist(rM , rC) ≥ nM .dupp, according to
Theorem 1, ∀m enclosed by rM and ∀c enclosed by rC , m is not influenced
by rC . Hence, nM and nC should be removed from nC .SM and nM .SC ,
respectively.

18

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

nC2

nC1

nF1

nF2

nM

MinDist(nM , nC2)

MaxDist(nM , nC1)

MinExistDist(nM , nF2)

MinDist(nM , nF1)

Figure 4.2: nF1 can be pruned from nM .SF , nC2 can be pruned from nM .SC

3. Similar to rule 2, given nF , if ∃nM ∈ nF .SM ,MinDist(rM , rF) ≥ nM .dupp,
then ∀m enclosed by rM and ∀f enclosed by rF , m is not influenced by
f . Thus, nM and nF should be removed from nF .SM and nM .SF , respec-
tively.

Figure 4.2 shows an example of these pruning rules on influence relation sets.
In this example, nM .dupp = MinExistDist(rM , rF2), nM .dlow = MinDist(rM , rF1).
According to rule 2, nC2 is not in nM .SC since MinDist(rC2 , rM) ≥ nM .dupp;
according to rule 3, nF1 is not in nM .SF since MinDist(rF1 , rM) ≥ nM .dupp;
according to rule 1, any c enclosed by rC1 should influence all m enclosed by
rM , since MaxDist(rM , rC1) < nM .dlow.

Intuitively, the influence relation sets are initialized as the roots of corre-
sponding trees, namely, nrootC .SM = {rootM}, nrootF .SM = {rootM}, nrootM .SC =
{rootF }, and nrootM .SF = {rootF }. As mentioned in algorithm 2, roots are
stored in the lists with the influence relation information as entries. Each time
an entry is processed, its child nodes are re-inserted into the corresponding lists
with their influence relation information computed. Before giving the details on
how the entries are processed in Section 4.2.3, we will first introduce the criteria
for determining the order of processing the entries in the next section.

4.2.2 Importance of nodes

We use the importance values of nodes to determine the access order for their
corresponding entries in the lists. In EEP, different trees have different uses
in pruning the search space: the candidate R-tree is traversed for the goal of
computing influence value for candidates while the existing facility R-tree and
the customer R-tree are traversed for the goal to prune unnecessary computa-
tions during computing the influence. Therefore, we have defined “importance”
differently for different trees to guide the tree traversals towards different goals.

19

To simplify the narration, we denote area(n) and |n| as the area of MBR and
the number of locations enclosed in the MBR corresponding to node n; |n.S| as
the number of nodes in n’s influence relation set; n.imp is the importance value
of node n.

• nC .imp. Since only the most influential candidates are desired in our
problem, we want to always access the most promising candidates first.
Recalling from Section 4.2.1, each entry in LC holds I lC for node nC in it,
we define the importance of a candidate node as the maximum number of
customers it can influence estimated by influence relation information in
that entry, i.e. nC .imp = I lC +

∑
nM∈nC .SM

|nM |.

• nF .imp. If the corresponding MBR of a facility node has a larger area,
it may affect the estimation of the influence of more candidates. Also,
a larger influence relation set on C suggests a facility node being more
relevant for candidates. Hence, nF .imp is defined as area(nF) · |nF .SC |.

• nM .imp. Larger area(oM) and larger |oM | suggest a greater possibility
for a customer node affecting the influence relation information of nodes
in other lists, therefore the customer node is more useful for pruning the
search space. With this rationale, nM .imp is defined as area(nM) · |nM | ·
|nM .SF | · |nM .SC |.

4.2.3 Processing entries

As described in Lines 4-6 in Algorithm 2 and the above sections, each time an
entry with the greatest importance value on a list is picked, its child nodes are
evaluated. If the node in the picked entry is a leaf node in tC , denoted as nC ,
then for c in nC we compute their exact influence values by checking I lC , nC .SM

and nM .SF for all nM ∈ nC .SM . The computation is similar to the solution
given in Section 4.1, however, here setsM and F are dramatically smaller thanks
to stored influence relation information in the entry. If the node in the picked
entry is an internal node, then we compute the influence relation information by
inheriting it from the parent node and prune it using rules described in Section
4.2.1. Please note we can always inherit the information instead of computing
it from scratch because the following property holds.

Property 1. For any child node nM ′ of nM , nM ′ .SF ⊂ nM .SF , and nM ′ .SC ⊂
nM .SF ; for any child node nC′ of nC , nC′ .SM ⊂ nC .SM ; for any child node
nF ′ of nF , nF ′ .SM ⊂ nF .SM .

After obtaining the influence relation information for child node n′, we
should update the stored information in other lists related to the parent n.
Again, we use the three rules based on distances between MBRs to prune un-
promising nodes in the influence relation sets. If child node n′ is still related
to other nodes in the lists, then its importance value is computed and the node
shall be re-inserted to the corresponding list. If the node picked is a leaf node
in tF or tM , we update its influence relation set, assign an importance value of
−1 to it and re-insert it into list LF or LM , respectively.

20

The algorithm terminates when there are at least k computed candidate loca-
tion cs’ influence values and all nodes remaining in LC have maximum influence
values smaller than the kth largest influence values of candidates computed. The
maximum influence values of nC in LC could be computed as IuC = I lC+|nC .SM |.
Also, when all entries on LM or LF have importance values smaller than 0, Line
4 or Line 5 is omitted in Algorithm 2. Algorithm 3 gives the pseudo-code for the
procedure in Lines 4-6 of Algorithm 2. Note that in line 8 whether n′ is related
can be determined by checking the three rules introduced in Section 4.2.1.

Algorithm 3: ProcessEntry(L)

Input: List L

1 Pick n with the largest n.imp from L
2 if n is an internal node then
3 Expand n
4 foreach child object n′ ∈ n do
5 Compute the influence relation information of n′

6 Update the influence relation information of nodes related to n′

7 Prune unpromising objects with updated influence relation
information

8 if n′ is related then
9 Insert n′ into L

10 if n is a leaf node then
11 if n ∈ LC then
12 Iu = I l + |n.SM |
13 if Iu > kth largest Ic computed so far then
14 foreach c ∈ n do
15 Compute Ic

4.2.4 Complexity of EEP

The construction of the R-Tree indexes incurs O(n log n) cost. With the con-
structed R-Tree, the major cost of EEP lies in the processing entry procedure,
which computes the importance and influence relation information for children
nodes of a node in the entry. Let r denote the average size of the influence
relation sets. As described in Algorithm 3, the cost of processing an entry is
contributed by computing the influence relation information and updating influ-
ence relation information for other related nodes. Though in practical settings,
M tends to be much larger than both F and C, we first denote their sizes as
O(n) for simplicity. For each entry, computing influence relation information
costs O(r) since a traversal on its parent’s influence relation set is adequate.
Updating influence relation information for related nodes is more complicated.
For each entry on LM , we need to check nC ∈ nM .SC and nF ∈ nM .SF to see
whether they can be pruned, for nC updated, we also check nM ∈ nC .SM for

21

further updates, resulting in O(r2) cost. For each entry on LC , we need to check
nM ∈ nC .SM to see whether nM can be pruned, also leading to an O(r) cost.
For each entry on LF , we need to first check nM ∈ nF .SM , for nM not pruned
in this procedure, nM .dlow and nM .dupp are updated. Additionally, we must
evaluate nC ∈ nM .SC and nF ∈ nM .SF to see whether they can be pruned with
the new distances. For nC updated, we check nM ∈ nC .SM to further compute
the influence upper bound for it. This procedure leads to a cost of O(r3).

In the best case, only O(k) candidates with greatest influence values are
accessed, therefore O(k · log n) node nCs are accessed. The while loop of Line
3 in Algorithm 2 only executes O(logn) times. Since influence relation sets are
pruned smoothly, the relevant set size O(r) = O(1). The overall cost of EEP in
the best case is O(n log n)+O(logn)·(O(1)+O(12)+O(1)+O(13)) = O(n log n).

In the worst case, all candidates are accessed so the tM is actually also fully
traversed. The while loop therefore executes O(n) times. Here, the techniques
eliminate few nodes from influence relation sets, thus O(r) = O(n). To sum-
marize, the overall cost of EEP in the worst case is O(n log n) +O(n) · (O(n) +
O(n2) +O(n) +O(n3)) = O(n4).

Clearly, the major factor determining the efficiency of EEP is the average
size r of the influence relation sets. In Chapter 5 we will see that in both
synthetic and real-world data sets, EEP outperforms SS in terms of executing
time, indicating r is generally much less then O(n). As previously mentioned,
|M | can be larger than |F | and |C| in reality. Thus if |M | dominate the scale
of the problem, the complexity of EEP can be represented by O(|M | log |M |)
in the best case and O(|M |3) in the worst case. Yet as illustrated in Section
5.4 the growth of EEP when |M | increases is similar to that of SS, suggesting
in most cases the complexity tends to be O(|M | log |M |) thanks to effective
pruning techniques.

4.3 Bounding Influence Pruning

EEP needs to maintain additional lists storing information of relation sets for
not only nodes in the candidate tree tC , but also for the customer tree tM and
the existing facility tree tF . This can consume a large amount of memory space
when the data sets are huge. Also, as a result of maintaining influence relation
lists for all data sets, its complexity in the worst case is at an undesired O(n4).
Since we ultimately care only about most influential candidates in answering
queries of the form defined in Definition 4, it is desired to focus on the candidate
tree tC rather than extensively studying all three trees.

In this section, we introduce another strategy to estimate and refine influ-
ence values for candidate locations without storing redundant information for
customer locations and existing facility locations. Similar to EEP, we again
index C and F with R-Trees and M with an aggregate R-Tree.

Specifically, the method traverses tC in a best first order, using a max-heap
to order currently available nodes by their influence upper bounds computed
before their insertions. For each node on the heap, we store an influence region

22

nC .R , locating where all customers can only be influenced by the candidates in
that node, a set nC .SF of relevant F node and a set nC .SM of relevant M node.
A node nF is called relevant to nC if its existence potentially helps refining the
influence regions for child node nC′ of nC . A node nM is called relevant to nC

if its MBR rM intersects the influence region nC .R, namely, m in rM might be
influenced by c in rC .

Each time, the top node on the max-heap is picked. When the picked node
is an internal one, the algorithm relies on geometric properties together with
stored information in the picked node to refine its children nodes’ influence re-
gions and relevant sets. With this computed information, the influence upper
bounds of child nodes can be retrieved by performing point enclosure queries on
tM . Next, each child node is evaluated with a global influence threshold, which
is maintained globally as the kth greatest influence value of candidates com-
puted so far. If it cannot be pruned, it is inserted into the max-heap for further
consideration. When the picked node is a leaf node, the method uses further
techniques to tighten the search space and performs exact influence computa-
tion for each location enclosed by the leaf node. Because the method focuses
on bounding candidates and uses influence upper bounds to prune unpromising
candidates, it’s named the Bounding Influence Pruning (BIP) algorithm. Al-
gorithm 4 lists the pseudo-code for BIP, where Iδ maintains the kth maximum
influence values seen so far.

Algorithm 4: Bounding Influence Pruning (BIP) Algorithm

Input: Root nodes rootM , rootF and rootC of the three trees
Output: TopInf(k,M,F,C)

1 rootC .SF ← {rootF }, rootC .SM ← {rootM}, HC .insert(rootC)
2 while HC ̸= ∅ do
3 nC = HC .pop()
4 if nC is leaf then
5 foreach c enclosed by nC do
6 Compute exact influence value Ic
7 if Ic > Iδ then
8 Update TopInf(k,M,F,C) and Iδ
9 else

10 foreach child node nC′ of nC do
11 Construct nC′ .R, nC′ .SF , nC′ .SM ;
12 Compute the influence value upper bound Iuc′
13 if Iuc′ > Iδ then
14 HC .insert(nC′)

15 return TopInf(k, M, F, C)

We will first introduce the methods for computing influence region and rel-
evant sets (Lines 11-12) in Section 4.3.1, and then elaborate on the techniques
involved in computing exact influence values for candidates (Line 6) in Section

23

rC rC rC

rC rC rC

Step 0 Step 1 Step 2

Step 3 Step 4 Step 5
Figure 4.3: Expanding nF ∈ nC .SF until no nF has rF intersecting with rC

4.3.2. The section ends with an analysis of the complexity of BIP in Section
4.3.3.

4.3.1 Constructing influence region and relevant sets

In this section, we describe the details for computing the influence region and
relevant sets for a given internal node nC . As described in Algorithm 4, the root
nodes of tM and tF are inserted into the relevant sets rootC .SM and rootC .SF ,
respectively. Then, rootC is inserted into the max-heap HC .

Each time we pick the top node nC from HC , which has the maximum IuC
among the nodes on the heap. To compute the influence region for a given
node nC , we first expand every nF ∈ nC .SF that has rF intersecting with rC .
Obviously, after a series of expanding operations, some rF will lie outside rC
while other rF s will lie inside rC . We call those rF s lying inside rC as inner
relevant F nodes, denoted as rC .S

−
F . Since we only need to compute influence

upper bound for nC , we will only use nC .SF \ rC .S−
F to compute the influence

region. For those customers locations laying inside rC , we assume they are
influenced by candidates in nC as we will ignore nC .S

−
F when computing the

influence region. Figure 4.3 shows an example of expanding nF . In the figure,
gray rectangles represent nF with rF intersecting with rC , and black rectangles
represent nF ∈ nC .S

−
F .

We use the following idea to compute the influence region for a given node
nC . On plane P, given two points, their perpendicular bisector divides P into
two regions, each of which contains one point. If another point q is influenced by
point p1 rather than p2, it must lie inside the half plane containing p1 rather than
that containing p2. [6] generalizes this idea from points to rectangles. Given
two rectangles r1 and r2, the generalized theorem uses multiple normalized
perpendicular bisectors to divide the plane P into two regions, one of which
contains all the points that might be influenced by points in r1.

Formally, we introduce this idea using concepts antipodal corners, normalized
perpendicular bisectors and Theorem 3.

24

NBrC .lr,rF .ul

NBrC .ur,rF .ll
NBrC .ul,rF .lr

NBrC .ll,rF .ur

BrC .lr,rF .ul

BrC .rl,rF .ll BrC .ul,rF .lr
BrC .ll,rF .ur

∩
i∈[1,4] NPrF .i

rC

rF

Figure 4.4: Normalized half planes are divided by
NBrC .1,rF .3, NBrC .2,rF .4, NBrC .3,rF .1, NBrC .4,rF .2; the gray region∩

i∈[1,4] NPrF .i contains customers who won’t be influenced by candidates
enclosed by rC according to Theorem 3

Definition 5 (Antipodal Corners). Let a rectangle r’s lower left, lower right,
upper left, and upper right corners be r.ll, r.lr, r.ul, r.ur, respectively. Given two
rectangle r1 and r2, the antipodal corners of r1 and r2 are four pairs of corner
points (r1.ll, r2.ur), (r1.lr, r2.ul), (r1.ul, r2.lr), and (r1.ur, r2.ll).

Definition 6 (Normalized Perpendicular Bisectors). Given two rectangles r1
and r2 and a pair of antipodal corners of r1 and r2, (ac1, ac2), the normalized
perpendicular bisector of ac1, ac2, denoted as NBac1,ac2 , is obtained through
moving their perpendicular bisector, denoted as Bac1,ac2 , to intersect a point
pac1,ac2 , where

pac1,ac2 .x =

{
r1.ur.x+r2.ur.x

2 , if ac1.x < ac2.x,
r1.ul.x+r2.ul.x

2 , if ac1.x ≥ ac2.x.

pac1,ac2 .y =

{
r1.ul.y+r2.ul.y

2 , if ac1.y < ac2.y
r1.ll.y+r2.ll.y

2 , if ac1.y ≥ ac2.y.

Figure 4.4 shows an example of the normalized half planes described above.
The concepts defined above help us to find influence regions for a given

node nC . Specifically, perpendicular bisectors ac1 and ac2 divide the plane P
into two half planes, denoted as Pac1 and Pac2 , respectively. The normalized
perpendicular bisectors of ac1 and ac2 also divide the plane into two planes. Let
NPac1 be the normalized perpendicular bisector corresponding to the half plane
Pac1 andNPac2 be the one corresponding to the half plane Pac2 . Remember that
two rectangles have four pairs of antipodal corners, each pair of nodes contribute
to a pair of normalized half planes. For brevity, let ri.lr = ri.1, ri.ur = ri.2,

25

ri.ul = ri.3, ri.ll = ri.4, where i = {1, 2}. Hence, the four pairs of half planes
can be denoted as (NPr1.1, NPr2.3), (NPr1.2, NPr2.4), (NPr1.3, NPr2.1), and
(NPr1.4, NPr2.2). Given a node nC and a node nF , and the theorem below
proved by [6], any customer m lying in

∩
i∈[1,4] NPr2.i is not influenced by any

candidate enclosed by rC .

Theorem 3. Given two rectangles r1 and r2, let p be a point in
∩

i∈[1,4] NPr2.i,
where NPr2.i denotes a normalized half plane corresponding to r2. Then the
minimum distance between p and any point in r1 must be larger than the maxi-
mum distance between p and any point in r2.

The gray region in Figure 4.4 is the described region of Theorem 3 of the
given example. Since this region contains customers, it cannot be influenced by
nC , so we call it a pruning region on nC defined by nF , denoted as nC .PRnF

.
The union of pruning regions defined by each nF in F \ nC .S

−
F is a region con-

taining customers not influenced. In other words, P \
∩

nF∈F\nC .S−
F
(nC .PRnF

)

is a region containing customers potentially influenced by candidates enclosed
by rC for a given nC . We define this region as the influence region for nC , i.e.,
nC .R. However, according to its definition, computing this region would re-
quire extensive accesses on F \nC .S

−
F . To avoid this tremendous cost, we select

the nearest nF s in 8 directions, denoted as Western(W), Southwestern(SW),
Southern(S), Southeastern(SE), Eastern(E), Northeastern(NE), Northern(N),
Northwestern(NW), of node nC . Again, the distance indicator used is the max-
imum distance between two rectangles rC and rF . Let nC .NNnF

denote the
set for these eight nearest nF s, nC .Rapp denote P \

∩
nC .NN(nF) nC .PRnF , then

since nC .NNnF
⊂ F \ nC .S

−
F , nC .R ⊂ nC .Rapp. Region nC .Rapp is only an

approximate influence region of nC , but as it contains the desired nC .R, it can
be used as a substitute for computing the influence upper bound and relevant
sets. In in the remainder of this report, we use nC .R to denote the approximate
influence region if there is no ambiguity.

Figure 4.5 demonstrates an example of computing nC .R for a given nC ,
where its nearest 8 nF s are in different directions. In the figure, the nearest nF s
are tagged by their corresponding direction to nC . The inner polygon is nC .R
is computed from rC and rF s using Theorem 3.

Due to the fact customers are indexed by an aggregate R-Tree tMH, we
further bound the polygon nC .R with several rectangles to enable efficient point
enclosure queries on tM . The gray region in Figure 4.5 corresponds to these
regions. In the implementation of the algorithm, it is these bounding rectangles
rather than the exact nC .R that is used to compute IuC . Also, according to
the definition of relevant M set, only nM with rm lying inside nC .R can have
customers being influenced by nC . For those intersecting rM , we expand the
corresponding nM just like expanding nF in the aforementioned description,
until there is no intersection. Thus, nC .SM = {nM ⊂ nC .R}.

Besides obtaining the relevant M set, we also need to compute the relevant
HF set with help from nC .R. Recall that the operations in Theorem 3 divide
the plane into 2 regions, one of which contains points not influenced by any

26

���
���
���

���
���
���

f1

f2

rC

rfNW

rfW

rfSW

rfS

rfSE

rfE

rfNE

rfN

Figure 4.5: Example of Influence Region

point in r1. We would like to use this to evaluate whether a node nF F \nC .S
−
F

is relevant to nC . Specifically, we apply Theorem 3 treating nF as the rectangle
r1, leading to a region nF .PRnC

=
∩

i∈[1,4] NPrC .i This nF .PRnC
contains

customers that cannot be influenced by any existing facility locations f enclosed
by rF . Obviously, if nC .R ⊂ nF .PRnC

, then for any customer m potentially
influenced by c in nC , any f enclosed by rF won’t influence it. Namely, if a given
node nF meets nC .R ⊂ nF .PRnC

, it can be eliminated from nC .SF since it is not
relevant to the influence value of nC . Of all nodes nF those are not eliminated
by this evaluation form the outer relevant F set of nC , denoted as nF .S

+
F . Then,

we have nC .SF = nC .S
+
F + nC .S

−
F . In Figure 4.5, f1 meets nf1 .PRnC ⊂ nC .R

thus it will be eliminated from nC .SF , while f2 has nf2 .PRnC
̸⊂ nC .R, thus

f2 ∈ nC .SF .
As described above, in order to compute nC .S

+
F , we need to evaluate all

nF F \ nC .S
−
F . This can be rather time-consuming when F is massive. To

overcome this, the following property is introduced.
Property 2. For child node nC′ of node nC ,

nC′ .R ⊂ nC .R, nC′ .SF ⊂ nC .SF , nC′ .SM ⊂ nC .SM .

Property 2 enables us to tighten the search space for evaluating nC .SF . Let
nC′ be a child node of nC , when computing nC′ .S+

F , instead of checking every
nF ∈ F \ nC′ .S−

F , it is adequate to check only nF ∈ nC .SF \ nC′ .S−
F . This trick

reduces unnecessary computation dramatically.

27

4.3.2 Computing exact influence for candidates

When the top node on max-heapHC is a leaf node, we need to compute the exact
influence values for all candidate locations under it. Let’s denote the picked leaf
node as nC . According to Property 2, we can compute influence regions and
relevant sets for candidate location from nC ’s relevant sets rather than from
scratch. In other words, from the definition of relevant sets, nC .SF and nC .SM

are the only customers and existing facilities that need to be considered in
computing the influence value of c ∈ nC , i.e. c.SF ⊂ nC .SF , c.SM ⊂ nC .SM .

Naively, we could perform the sequential scan styled computation on relevant
sets to obtain the exact influence value for c. However, thanks to the MBRs we
stored in relevant sets, it is possible to further tighten the scan space with simple
geometric checks. Again, the primary idea is that very distant customers are not
likely to be influenced due to the existence of existing facilities near them. Also,
very distant existing facilities cannot affect the influence value of a candidate
since the customers can only be influenced by either nearby existing facilities or
the candidate facility.

Formally, given candidate location c under leaf node nC , we first find 4
nearest F nodes in the relevant F set of nC .SF . Here, the distance crite-
rion used is the maximum distance between any point in rF and c, denoted
as MaxDist(c, rF). We use the furthest node to c in each nearest rF to draw
a perpendicular bisector so together we have a Voronoi cell for c. Similar to
the technique in [27], the Voronoi cell is bounded by a minimum rectangle
denoted as c.R. According to the property of Voronoi cells, only customers
located in this c.R can be influenced by c. To prune relevant F sets, we ex-
tend c.R by doubling the distances between rectangle vertices and c, obtaining
a new rectangle denoted as c.R′. According to the conclusion in [27], all ex-
isting facilities outside this c.R′ can be pruned when computing the influence
of c. Using this properties, we have c.SF = {nF ∈ nC .SF , rF

∩
c.R′ ̸= ∅} and

c.SM = {nM ∈ nC .SM , rM
∩
c.R ̸= ∅}.

Figure 4.6 gives an example of the technique described above, where nF1−5

are 5 F nodes in nC .SF , nM is a M node in nC .SM . According to the property
of bounding rectangles on Voronoi cells and the conclusion in [27], nF5 and nM

can be pruned out from c.SF and c.SM , respectively.
After c.SF and c.SM are refined, we can then employ sequential scan on them

to obtain the exact influence value for c. However, since we still have R-Tree
nodes in the relevant sets, it is possible to take further advantage of the property
of MBRs before diving into distance computations between locations. Our basic
idea is to avoid executing redundant distance computations for existing facility
locations which simply give no helpful information. Specifically, given c and a
customer location m, we want to prune nF from c.SF . To achieve this, we use a
distance metric named MinMaxDist(m, rF), which was originally introduced
in [24]. The MinMaxDist between a point m and an MBR rF is defined as
the minimum distance from m, within which at least one point enclosed in rF
can be found. Note that according to the R-tree definition, there is at least
one point on each edge of a given MBR. Therefore, we follow [35] to define

28

���
���
���
���
���

���
���
���
���
���

�����
�����
�����

�����
�����
�����

c

nF1

nF2

nF3

nF4

c.R

c.R′

nM
nF5

Figure 4.6: nF1−4 are 4 nearest nF ∈ nC .SF , nM can be pruned from c.SM since
it lies outside c.R, nF5 can be pruned from c.SF since it lies outside c.R′

the MinMaxDist as the 2nd smallest distance among d(m, f1−4) where f1−4

represent the four vertexes of rF .
Together with the distance metric MinDist(m, rF), we can obtain the fol-

lowing pruning rules. Given m and c,

1. If for nF ∈ c.SF , MinDist(m, rF) ≥ d(c,m), then nF can be pruned from
c.SF ; This is because if MinDist(m, rF) ≥ d(c,m), ∀f ∈ rF , d(f,m) ≥
d(c,m), i.e., whether c influences m is irrelevant to rF ;

2. If for nF ∈ c.SF , MinMaxDist(m, rF) < d(c,m), c cannot influence m;
This is because according to definition of MinMaxDist, ∃f ∈ rF that
d(f,m) < d(c,m);

3. If for nF ∈ c.SF , MinDist(m, rF) < d(c,m) and MinMaxDist(m, rF) ≥
d(c,m), nF should be preserved in c.SF for further computation; Since we
are not sure whether there is a f ∈ rF that MinDist(m, rF) < d(f,m) <
MinMaxDist(m, rF), we are not sure whether c can influence m given
rf .

Figure 4.7 gives an example of the above pruning rules. On determining
whether a given c influences m, nF1 should be discarded since it provides no
information for the computation; nF4 should be preserved in c.SF for further
computations; and if either nF2 or nF3 is present, then we can be sure c cannot
influence m, so we can skip checking this m.

4.3.3 Complexity of BIP

The computational cost of BIP can be divided into index construction, pruning
and exact influence computation. The R-Tree indexes needed can be constructed
in O(n log n).

In the best case, only O(k) most influential candidates are accessed. Thus
only kO(logn) nodes nC in tC is accessed. This is because if the pruning

29

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

m

c

nF1

nF2

nF3

nF4

d(m, c)

MinMaxDist(m,nF)

MinDist(m,nF)

Figure 4.7: nF1 can be discarded; nF4 suggests c won’t influence m; nF2 and
nF3 should be further expanded to help determining whether c influences m

technique works well, most of the irrelevant F and M locations are pruned after
the construction of the influence region and relevant sets in the beginning with
O(n) cost. Thanks to Property 2, subsequent computations on influence upper
bounds and relevant sets consume O(1). Also, the exact influence computation
procedure only need to consume O(k) · O(c.SM) · O(c.SF) = O(k). Thus, the
overall run-time complexity of BIP in the best case is O(n log n)+O(n)+O(k) =
O(n log n).

In the worst case, all candidates are accessed, therefore all nodes in tC are
accessed. For each accessed node nC in tC , an O(n) cost is needed to compute
the influence upper bound and relevant sets. Also, an O(n) cost is again needed
for further pruning of c.SM and c.SF before computing the exact influence.
Due to ineffectiveness of pruning, a cost of O(n) ·O(n) ·O(n) = O(n3) is needed
when computing the exact influence values. To summarize, the overall run-time
complexity of BIP in the worst case is O(n log n) +O(n2) +O(n3) = O(n3).

That is to say, the bottleneck of BIP could be the exact influence value
computation since it simply follows a three-layer loop on all three data sets. Yet
as demonstrated in Chapter 5, BIP beats SS, which is of a O(n2) complexity,
in terms of execution time. This suggests that in both synthetic and real world
data sets, BIP can achieve a reasonable pruning performance, substantially
eliminating unnecessary exact influence computations.

Similar to the analysis for EEP, when we perceive |M | as the dominating data
set in the input, the complexity of BIP can be represented by O(|M | log |M |) in
both the best case and the worst case. This is because BIP centers on candidate
tree tC and tries to avoids repeated access on M . Even in the worst case, the
pruning phase costs O(|M |) and exact influence computation also only costs
O(|M |), leaving the overall cost to be O(|M | log |M |).

30

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

f1

f2

f3
c

customer existing facility new facility

Figure 4.8: c lies in 4 nearest facility circles of customers(shaded ones), therefore
Ic = 4

4.4 Nearest Facility Circle

Though both EEP and BIP introduced in the last sub sections prune unneces-
sary influence computations for unpopular candidate locations, they still need
to extensively traverse tF or tM to obtain hints on pruning C. Remember that
Definition 4 gives the direct way to obtain the answer, based on which we get the
sequential scan algorithm. The implementation of that idea can be enhanced
by dividing the process into to two problems. In the first problem we can apply
classic geometric algorithms and use R-Tree to index the information computed
by the first algorithm instead of the original data sets to boost query answering
efficiency.

First, let us define nearest facility circle(nfc) for a customer location. The
nearest facility circle of a customer m is a circle centered at m, with a radius of
min∀f∈F (d(f,m)). Let m.nfc denote this circle, and m.nfd denote its radius.
A facility would be the nearest facility of a given customer m if and only if the
facility lies in the nearest facility circle m.nfc. Hence, the potential influence
can be computed as the number of the nearest facility circles the facility lies
in if it is built on that candidate location. For example, in Figure 4.8, the
new facility c is located in four nearest facility circles of the shaded customers,
therefore its potential influence is 4. By computing nearest facility circles for
all customers first, we could reduce the influence computing procedure to point
enclosure queries on an R-Tree indexing the circles.

Specifically, we still need to find the nfd for each m just like in the sequen-
tial scan algorithm. However, since we need to find all of m’s nearest neighbors
in another set F , it can actually be solved as an all nearest neighbors problem,
where the task is to find the nearest neighbors for all data points. After obtain-
ing nfds, instead of scanning M for every c, we can construct an R-Tree index
for these m.nfcs. With this R-Tree, we can obtain influence of c by performing
a point enclosure query to count the circles in which it is located. This simplifies

31

the previous repeated scan process on M tremendously. Since this algorithm
is based on R-Tree indexing the nearest facility circle, we name it the Nearest
Facility Circle algorithm. Its pseudo-code is shown in Algorithm 5.

Algorithm 5: Nearest Facility Circle (NFC)

Input: k, customer set M , existing facility set F , candidate location set
C

Output: TopInf(k, M, F, C)

1 compute m.nfd for all m ∈M on F using the all nearest neighbor
algorithm

2 construct an R-Tree tree indexing m.nfc
3 foreach c ∈ C do
4 use c to perform point enclosure query on tree to obtain Ic
5 Sort C by Ic
6 TopInf(k, M, F, C) ← First k locations in C

It is known algorithms such as the k-d tree based nearest neighbor search
algorithm and the Voronoi diagram algorithm can solve all nearest neighbor
problem on the plane with a cost of O(n log n) [31] [40]. Thus, the nearest
facility circles can be computed with a cost of O(n log n). The construction of
an R-Tree index tree takes O(n log n) as well, while the point enclosure queries
take at best O(n log n) and at worst O(n2) cost. To summarize, the run-time
complexity of NFC algorithm is O(n log n) in the best case and O(n2) in the
worst case. In practical situations, where the customer data set is likely to be
much larger than both facility and candidate sets, the most expensive steps in
NFC are computing the nearest facilities for every customer and constructing
an R-tree on customers’ nearest facility circles, both of which incur O(n log n)
cost. In other words, when |M | dominates the problem scale, the overall cost
of NFC is O(|M | log |M |) + O(log |M |) = O(|M | log |M |). This explains the
advantages NFC maintains over EEP and BIP since NFC manages to achieve
anO(|M | log |M |) complexity without using any complicated pruning techniques
that are employed by EEP and BIP.

4.5 Nearest Facility Circle Join
It is easy to observe that in NFC algorithm, the candidates are considered
individually, which may incur high cost in the online query procedure if the
number of candidates climbs. In this section, we propose to construct another R-
Tree for the candidate set such that the online influence querying procedure can
be done via joining this candidate R-Tree with the NFC R-tree. The expected
improvement brought by the additional R-Tree will be the competitive CPU
time and much less I/O operations as the query procedure is done for a group
of candidates altogether. We denote this algorithm as Nearest Facility Circle
Join (NFCJ). Algorithm 6 shows the steps of NFCJ, which simply replace the

32

point enclosure query with a classic intersection join procedure over the two
R-trees [4] (line 4).

Specifically, the join procedure begins from the roots of two trees and recur-
sively call a method (shown in Algorithm 7) to join the child nodes of two given
nodes from the candidate R-tree and the NFC R-tree. Here, two nodes should
be joined together if their MBRs intersect with each other. If both two to-be
joined nodes are internal nodes (line 1-2), a plan sweep procedure is used to de-
termine which child nodes should be joined. This procedure first sorts the child
nodes of each node respectively, and then checks the intersection relationship
between nodes in the two sorted queues. If either node is a leaf and the other is
an internal, then it checks whether the child nodes of the internal one intersect
with the leaf node and if so joins them together (line 3 - 10). When reaching to
the leaf nodes, the counter for each candidate is added by the number of NFC
joined with that candidate (line 11-13). After all leaf nodes in the candidate R-
tree are joined with their intersected NFC, the counter of each candidate gives
the influence value of that candidate.

Algorithm 6: Nearest Facility Circle Join (NFCJ)

Input: k, customer set M , existing facility set F , candidate location set
C

Output: TopInf(k, M, F, C)

1 compute m.nfd for all m ∈M on F using the all nearest neighbor
algorithm

2 construct an R-Tree tree indexing m.nfc
3 construct an R-Tree tC indexing candidates C
4 Join(tree, tC) by counting the cardinality of joined nfcs for each c ∈ C
5 Sort C by Ic
6 TopInf(k, M, F, C) ← First k locations in C

Because NFCJ still needs to compute the nearest facilities for each customer,
and the R-tree two way join is of time complexity O(n log n) in average and
O(n2) in worst, the theoretic time complexity of NFCJ is the same to NFC, i.e.,
O(|M | log |M |).

33

Algorithm 7: Join(nF , nC) in NFCJ

Input: A node nF from NFC tree and a node nC from tC
Output: Joined nearest facility circles for each candidate

1 if nF is not leaf && nC is not leaf then
2 plane sweep child nodes of nF and nC

3 if nF is leaf && nC is not leaf then
4 foreach child node n′

C of nC do
5 if nF intersects n′

C then
6 Join(nF , n

′
C)

7 if nC is leaf && nF is not leaf then
8 foreach child node n′

F of nF do
9 if n′

F intersects nC then
10 Join(n′

F , nC)

11 if nF is leaf && nC is leaf then
12 if nF intersects nC then
13 IC ++

34

Chapter 5

Performance Study

In this chapter, we present a performance study conducted on the algorithms
described in Chapter 4. Notice that we are dealing with two dimensional space
data sets, and we use two double variables to store a location. Hence the biggest
data set used in the experiment, namely the 4M data set ofM , only consumes 64
MB main memory. This suggests the problem is computation-intensive instead
of I/O-intensive. In the remainder of this chapter, we still show results on both
CPU time and I/O operation number for the sake of completeness. Additionally,
to follow the tradition in the literature and to conduct a comparison of the true
performance, we do not use any page buffering or cache scheduling techniques
in our experiments. We incorporate the I/O operation cost into the CPU time
cost to roughly compute a running time cost (by timing a 12ms random read
latency of hard disk to the number of I/O operations) for EEP, BIP, NFC, and
NFCJ.

5.1 Experimental Setup

We conduct all experiments on a workstation running CentOS 6.4 with a 3.2GHz
six-core CPU and 6GB RAM memory. All algorithms are implemented in C++.
Specifically, the implementation of the NFC and NFCJ algorithm used the meth-
ods of [2] to perform all nearest neighbor queries.

Both synthetic and real world data sets are used in our experiments. The
synthetic data sets are generated to contain 20 clusters; each cluster in the
Gaussian data sets and the Zipfian data sets follows Gaussian and Zipfian dis-
tribution, respectively. The real world data sets contain 1,758,928 and 2,330,014
real place locations in Melbourne, VIC, Australia and Los Angeles, CA, United
States, respectively. This data are part of OpenStreet Map Project [21] and are
pre-processed by CloudMade [10]. The distribution of the real world data sets
are shown in Figure 5.1. For all data sets, we uniformly sample specific number
of data points to form separate sets C, F , and M .

The parameters and data set cardinalities are listed in Table 5.1, where the
default values are highlighted in bold style.

35

(a) Melbourne data sets (b) Los Angeles data sets

Figure 5.1: Real world data sets distribution

Table 5.1: Experiment configurations

Parameter Synthetic Data Melbourne Loa Angeles

|M | 500K, 1M, 2M, 4M 200K, 400K, 800K, 1.6M 250K, 500K, 1M, 2M

|F | 5K, 10K, 20K, 40K 2.5K, 5K, 10K, 20K 5K, 10K, 20K, 40K

|C| 25K, 50K, 100K, 200K 10K, 20K 40K, 80K 25K, 50K, 100K, 200K

k 1, 10, 100, 1000, 10000 10 1, 10, 100, 1000, 10000

Node Size 1K, 2K, 4K 2K 1K, 2K, 4K

Distribution Gaussian, Zipfian Real Real

5.2 Effect of Parameter k

As different values of parameter k are expected to affect the pruning power of the
proposed branch and bound algorithms BIP and EEP, we conduct experiments
using default configuration. Figure 5.2 gives the results of the performance of
BIP and EEP when varying k from 1 to 10000 on the Zipfian data sets. Results
on other data sets are similar thus omitted here. Though the two algorithms
are designed to leverage the parameter k to early terminate as described in Sec-
tion 4.2 and Section 4.3, it turns out that in most cases their pruning power is
limited on the candidate sets. While BIP can prune around half of the candi-
dates when k is small, EEP can rarely prune any in our experiments. This can
be explained by two reasons. First, during the procedure of pruning in both
algorithms, all three R-trees are involved; as each R-tree bounds the branch by
aggregating the spatial information, involving all of them renders the obtained
bounds significantly less effective. Second, both branch and bound algorithms
aim at pruning the existing facility and the customer set in addition to the
candidate set; the less effectiveness on the candidate sets may not reflect the

36

0

10000

20000

30000

40000

50000

1 10 100 1K 10K#
 o

f
ac

tu
al

 c
o

m
p
u

te
d
 c

an
d
id

at
es

parameter k

BIP EEP

(a) # of computed candidates, Zipfian

10
4

10
5

10
6

10
7

1 10 100 1K 10K

C
P

U
 t

im
e

(m
s)

parameter k

BIP EEP

(b) CPU time, Zipfian

Figure 5.2: Effect of parmeter k

10
1

10
2

10
3

10
4

10
5

10
6

10
7

1KB 2KB 4KB

C
P

U
 t

im
e
 (

m
s)

size of R-Tree fanout

NFC

NFCJ

BIP

EEP

(a) CPU time, Los Angeles

10
4

10
5

10
6

10
7

10
8

10
9

1KB 2KB 4KB

#
 o

f
IO

 o
p
er

at
io

n
s

size of R-Tree fanout

NFC
NFCJ

BIP
EEP

(b) # of I/O, Los Angeles

Figure 5.3: Effect of fanout

pruning power of the algorithms on the other two sets. As the result, the perfor-
mance of the algorithms in terms of CPU time is relatively insensitive towards
the value of k, which is demonstrated in Figure 5.2b.

5.3 Effect of Node Size (fanout)

We vary the R-tree node size to study its effect on the performance of the
proposed algorithms. The corresponding results on the Los Angeles data sets
are shown in Figure 5.3. As demonstrated in these figures, in all cases, both NFC
and NFCJ significantly outperforms EEP and BIP in two orders of magnitude.
While the increased size of node does decrease the I/O performance of both
NFC and NFCJ gradually, it has little effect on the CPU time cost of NFC and
NFCJ. This is because for the same amount of data, bigger nodes lead shorter
trees but do not bring significant benefits on distance computation. Both EEP
and BIP are less sensitive towards the variation of node size as the variation here
is not significant, it may take a much larger variation on the tree height to affect
the performance of branch and bound algorithms. It can also be observed that
when the node size is 2K, the CPU time of NFCJ turns out to be outperformed
by NFC; this can be explained by that the performance of R-tree join is highly
dependent upon the (spatial) grouping arrangement of R-tree, when the node
size is set to 2K, the overlapping regions between different branches in the
candidate R-tree could be relatively large that the efficiency earned by grouping

37

query is overweighted by traversing multiple branches of one tree for every node
in the other tree.

5.4 Effect of Data Set Cardinality

In this section, we study the effect of the cardinality of each data set has on
all algorithms. For each case, the CPU time, the number of I/O operations and
the running time derived by summing the I/O cost (timed by 12ms latency per
operation) and the CPU time cost are shown respectively for all algorithms.

Effect of candidate cardinality |C|. It is expected that more candidates
result to higher query cost. We vary the cardinality of candidate set and list
the performance of all algorithms on four data sets in Figure 5.4. Overall, the
performance of all algorithms degrades gradually as the cardinality of C grows.
NFC and NFCJ outperform all other algorithm to up two, four, and three orders
of magnitudes in terms of the CPU time, the number of I/O operations, and
the running time, respectively. EEP turns out to be less efficient than SS.
The reason for this is that EEP traverses the tree guided by the importance of
nodes; it may follow a traversal order more like breadth first search such that
it degrades to SS at the bottom of the trees but has additional overhead on
attempt of pruning. This suggests that the performance of EEP tends to have a
time complexity close to that in the worst case. BIP outperforms SS by almost
one order of magnitude in terms of CPU time. The reason behind this is that
BIP follows a best first search more like a depth-first search, i.e., computing the
exact influence values for part of the candidates first and use them as the guide
during traversal. The overall performance result fit to our theoretic analysis
that NFC and NFCJ have the lower time complexity comparing to both BIP
and EEP. Additionally, in terms of number of operations, NFCJ constantly
beats NFC by several times, justifying the intuition of grouping point enclosure
queries by using the candidate R-tree. This advantage makes NFCJ the best
performing algorithm in terms of running time cost.

Effect of facility cardinality |F |. The cardinality of the facility set only
has a linear effect on the performance when the sequential scan method is used.
However, it may have significant effect on algorithms that utilize the facility set
to prune the computations. We vary this cardinality and show the results of
the performance of all algorithms in Figure 5.5. As illustrated in the figures,
the performance of BIP and NFC is improved while that of NFCJ stays the
same when the number of existing facilities grows. For BIP, the effect on CPU
time is two-edge: the more existing facilities, the smaller the influence region
for each candidate node, yet also the more facilities to be evaluated to see
whether they are relevant. These two factors explain the first decreasing then
increasing CPU time cost in Figure 5.5a and Figure 5.5d, and also the slightly
increasing CPU time cost in Figure 5.5g and Figure 5.5j. However, the benefit of
more existing facilities, i.e., the greater pruning power, does gain advantage in
terms of the number of I/O operations, as depicted in Figure 5.5b, Figure 5.5e,
Figure 5.5h, and Figure 5.5k. For NFC, the more existing facilities indicate the

38

10
2

10
3

10
4

10
5

10
6

10
7

25K 50K 100K 200K

C
P

U
 t

im
e
 (

m
s)

of candidates

NFC

NFCJ

BIP

EEP

SS

(a) CPU time, Gaussian

10
5

10
6

10
7

10
8

10
9

10
10

25K 50K 100K 200K

#
 o

f
IO

 o
p
er

at
io

n
s

of candidates

NFC
NFCJ

BIP
EEP

(b) # of I/O, Gaussian

10
3

10
4

10
5

10
6

10
7

10
8

25K 50K 100K 200K

ru
n
n

in
g

 t
im

e
(s

)

of candidates

NFC
NFCJ

BIP
EEP

(c) Running time, Gaussian

10
3

10
4

10
5

10
6

10
7

25K 50K 100K 200K

C
P

U
 t

im
e
 (

m
s)

of candidates

NFC

NFCJ

BIP

EEP

SS

(d) CPU time, Zipfian

10
5

10
6

10
7

10
8

10
9

25K 50K 100K 200K

#
 o

f
IO

 o
p

er
at

io
n

s

of candidates

NFC
NFCJ

BIP
EEP

(e) # of I/O, Zipfian

10
3

10
4

10
5

10
6

10
7

25K 50K 100K 200K

ru
n

n
in

g
 t

im
e

(s
)

of candidates

NFC
NFCJ

BIP
EEP

(f) Running time, Zipfian

10
2

10
3

10
4

10
5

10
6

10K 20K 40K 80K

C
P

U
 t

im
e
 (

m
s)

of candidates

NFC

NFCJ

BIP

EEP

SS

(g) CPU time, Melbourne

10
5

10
6

10
7

10
8

10
9

10K 20K 40K 80K

#
 o

f
IO

 o
p

er
at

io
n

s

of candidates

NFC
NFCJ

BIP
EEP

(h) # of I/O, Melbourne

10
3

10
4

10
5

10
6

10
7

10K 20K 40K 80K

ru
n

n
in

g
 t

im
e

(s
)

of candidates

NFC
NFCJ

BIP
EEP

(i) Running time, Melbourne

10
3

10
4

10
5

10
6

10
7

25K 50K 100K 200K

C
P

U
 t

im
e
 (

m
s)

of candidates

NFC

NFCJ

BIP

EEP

SS

(j) CPU time, Los Angeles

10
5

10
6

10
7

10
8

10
9

25K 50K 100K 200K

#
 o

f
IO

 o
p

er
at

io
n

s

of candidates

NFC
NFCJ

BIP
EEP

(k) # of I/O, Los Angeles

10
3

10
4

10
5

10
6

10
7

25K 50K 100K 200K

ru
n

n
in

g
 t

im
e

(s
)

of candidates

NFC
NFCJ

BIP
EEP

(l) Running time, Los Angeles

Figure 5.4: Effect of |C| on algorithm performance

39

10
3

10
4

10
5

10
6

10
7

5K 10K 20K 40K

C
P

U
 t

im
e

(m
s)

of existing facilities

NFC
NFCJ

BIP
EEP

SS

(a) CPU time, Gaussian

10
5

10
6

10
7

10
8

10
9

5K 10K 20K 40K

#
 o

f
IO

 o
p
er

at
io

n
s

of existing facilities

NFC
NFCJ

BIP
EEP

(b) # of I/O, Gaussian

10
3

10
4

10
5

10
6

10
7

5K 10K 20K 40K

ru
n
n

in
g

 t
im

e
(s

)

of existing facilities

NFC
NFCJ

BIP
EEP

(c) Running time, Gaussian

10
2

10
3

10
4

10
5

10
6

10
7

10
8

5K 10K 20K 40K

C
P

U
 t

im
e

(m
s)

of existing facilities

NFC
NFCJ

BIP
EEP

SS

(d) CPU time, Zipfian

10
5

10
6

10
7

10
8

10
9

5K 10K 20K 40K

#
 o

f
IO

 o
p

er
at

io
n

s

of existing facilities

NFC
NFCJ

BIP
EEP

(e) # of I/O, Zipfian

10
3

10
4

10
5

10
6

10
7

5K 10K 20K 40K

ru
n

n
in

g
 t

im
e

(s
)

of existing facilities

NFC
NFCJ

BIP
EEP

(f) Running time, Zipfian

10
2

10
3

10
4

10
5

10
6

2.5K 5K 10K 20K

C
P

U
 t

im
e

(m
s)

of existing facilities

NFC
NFCJ

BIP
EEP

SS

(g) CPU time, Melbourne

10
5

10
6

10
7

10
8

10
9

2.5K 5K 10K 20K

#
 o

f
IO

 o
p

er
at

io
n

s

of existing facilities

NFC
NFCJ

BIP
EEP

(h) # of I/O, Melbourne

10
3

10
4

10
5

10
6

10
7

2.5K 5K 10K 20K

ru
n

n
in

g
 t

im
e

(s
)

of existing facilities

NFC
NFCJ

BIP
EEP

(i) Running time, Melbourne

10
2

10
3

10
4

10
5

10
6

5K 10K 20K 40K

C
P

U
 t

im
e

(m
s)

of existing facilities

NFC
NFCJ

BIP
EEP

SS

(j) CPU time, Los Angeles

10
5

10
6

10
7

10
8

10
9

5K 10K 20K 40K

#
 o

f
IO

 o
p

er
at

io
n

s

of existing facilities

NFC
NFCJ

BIP
EEP

(k) # of I/O, Los Angeles

10
3

10
4

10
5

10
6

10
7

5K 10K 20K 40K

ru
n

n
in

g
 t

im
e

(s
)

of existing facilities

NFC
NFCJ

BIP
EEP

(l) Running time, Los Angeles

Figure 5.5: Effect of |F |

40

smaller each nearest facility circle will be, which result to the better organized
R-tree as less nearest facility circles are likely to overlap with each other. This
is why NFC enjoys the greater existing facility set F in all cases shown in the
figures. However, NFCJ is not sensitive towards the varying F as it groups
candidates and nearest facility circles together and traverse both trees level by
level; it does not matter much if many nodes are overlapped with each other as
grouping effect may diminish the disadvantage brought by overlapping nodes,
e.g., extensive traversals will be shared. Overall, NFCJ and NFC beat SS, EEP,
and BIP in orders of magnitude. NFC outperforms NFCJ in terms of CPU time
when facility set grows bigger, NFCJ is still the best among all algorithm which
achieve the lowest number of I/O operations and therefore the smallest running
time cost in all cases.

Effect of customer cardinality |M |. More customers may increase the
influence values of facilities and it is expected to consume more time as well
as I/O operations. The results of varying the cardinality of M are given in
Figure 5.6. In all cases, the performance of all algorithms degrades as the
cardinality of M grows. The ranking of algorithms in terms of their efficiency
still stays the same, i.e., NFCJ and NFC beat other algorithms by up to two
orders of magnitude while BIP outperforms SS and SS outperforms EEP. It
can also be observed that BIP is more steady when compared to SS when the
cardinality of the customer set grows. The reason is that BIP tends to avoid
querying the customer R-tree and does not extensively traverse this customer
R-tree when pruning. Hence, the growth of customer does not directly affect
the performance of BIP. To summarize, the results here are similar to what has
been shown in previous experiments and fit to our theoretic analysis in previous
sections.

5.5 Summary of Experimental Results

According to the results and analysis, in most cases NFCJ is the best choice
for answering the top-k most influential location selection query, while NFC
remains a reasonable alternatives when the existing facility set is rather large
and the CPU time is the dominant concern.

41

10
3

10
4

10
5

10
6

10
7

500K 1M 2M 4M

C
P

U
 t

im
e
 (

m
s)

of customers

NFC

NFCJ

BIP

EEP

SS

(a) CPU time, Gaussian

10
5

10
6

10
7

10
8

10
9

500K 1M 2M 4M

#
 o

f
IO

 o
p
er

at
io

n
s

of customers

NFC
NFCJ

BIP
EEP

(b) # of I/O, Gaussian

10
3

10
4

10
5

10
6

10
7

500K 1M 2M 4M

ru
n
n

in
g

 t
im

e
(s

)

of customers

NFC
NFCJ

BIP
EEP

(c) Running time, Gaussian

10
3

10
4

10
5

10
6

10
7

500K 1M 2M 4M

C
P

U
 t

im
e
 (

m
s)

of customers

NFC

NFCJ

BIP

EEP

SS

(d) CPU time, Zipfian

10
5

10
6

10
7

10
8

10
9

500K 1M 2M 4M

#
 o

f
IO

 o
p

er
at

io
n

s

of customers

NFC
NFCJ

BIP
EEP

(e) # of I/O, Zipfian

10
3

10
4

10
5

10
6

10
7

500K 1M 2M 4M

ru
n

n
in

g
 t

im
e

(s
)

of customers

NFC
NFCJ

BIP
EEP

(f) Running time, Zipfian

10
2

10
3

10
4

10
5

10
6

10
7

200K 400K 800K 1.6M

C
P

U
 t

im
e
 (

m
s)

of customers

NFC

NFCJ

BIP

EEP

SS

(g) CPU time, Melbourne

10
4

10
5

10
6

10
7

10
8

10
9

200K 400K 800K 1.6M

#
 o

f
IO

 o
p

er
at

io
n

s

of customers

NFC
NFCJ

BIP
EEP

(h) # of I/O, Melbourne

10
2

10
3

10
4

10
5

10
6

10
7

200K 400K 800K 1.6M

ru
n

n
in

g
 t

im
e

(s
)

of customers

NFC
NFCJ

BIP
EEP

(i) Running time, Melbourne

10
2

10
3

10
4

10
5

10
6

10
7

250K 500K 1M 2M

C
P

U
 t

im
e
 (

m
s)

of customers

NFC

NFCJ

BIP

EEP

SS

(j) CPU time, Los Angeles

10
4

10
5

10
6

10
7

10
8

10
9

250K 500K 1M 2M

#
 o

f
IO

 o
p

er
at

io
n

s

of customers

NFC
NFCJ

BIP
EEP

(k) # of I/O, Los Angeles

10
2

10
3

10
4

10
5

10
6

10
7

250K 500K 1M 2M

ru
n

n
in

g
 t

im
e

(s
)

of customers

NFC
NFCJ

BIP
EEP

(l) Running time, Los Angeles

Figure 5.6: Effect of |M |

42

Chapter 6

Conclusion

We formulated a practical location selection problem using reverse nearest neigh-
bor semantics, proposing a novel top-k most influential location selection query.
We presented several algorithms for processing the query, namely Sequential
Scan (SS), Estimation Expanding Pruning (EEP), Bounding Influence Prun-
ing (BIP), Nearest Facility Circle (NFC), and NFC join (NFCJ), together with
thorough analysis. We further provided an extensive experimental study on
them and the results agree with the analysis. The results confirm that among
all algorithms, NFCJ is the most efficient algorithm in terms of both time and
I/O operations in most cases.

43

Bibliography

[1] Achtert, E., Kriegel, H.P., Krger, P., Renz, M., Zfle, A.: Reverse k-nearest
neighbor search in dynamic and general metric databases. In: Proc. of
EDBT (2009)

[2] ANNLibrary: http://www.cs.umd.edu/∼mount/ann/ (2011)

[3] Aronovich, L., Spiegler, I.: Bulk Construction of Dynamic Clustered Metric
Trees. Knowledge and Information Systems 22(2), 211–244 (2009)

[4] Brinkhoff, T., Kriegel, H.P., Seeger, B.: Efficient processing of spatial joins
using r-trees. In: Proc. of SIGMOD (1993)

[5] Cabello, S., D, J.M., Langerman, S., Seara, C.: Reverse Facility Location
Problems. In: Proc. of CCCG (2006)

[6] Cheema, M.A., Lin, X., Wang, W., Zhang, W., Pei, J.: Probabilistic Re-
verse Nearest Neighbor Queries on Uncertain Data. IEEE TKDE 22(4),
550–564 (2010)

[7] Cheema, M.A., Lin, X., Zhang, W., Zhang, Y.: Influence Zone : Efficiently
Processing Reverse k Nearest Neighbors Queries. In: Proc. of ICDE (2011)

[8] Cheema, M.A., Zhang, W., Lin, X., Zhang, Y.: Efficiently Processing Snap-
shot and Continuous Reverse k Nearest Neighbors Queries. The VLDB
Journal (2012)

[9] Chen, H., Liu, J., Furuse, K., Yu, J.X., Ohbo, N.: Indexing Expensive
Functions for Efficient Multi-Dimensional Similarity Search. Knowledge
and Information Systems 27(2), 165–192 (2010)

[10] CloudMade: http://downloads.cloudmade.com/ (2013)

[11] Du, Y., Zhang, D., Xia, T.: The Optimal-Location Query. Advances in
Spatial and Temporal Databases 3633, 163–180 (2005)

[12] Gao, Y., Zheng, B., Chen, G., Li, Q.: Optimal-Location-Selection Query
Processing in Spatial Databases. IEEE TKDE 68(8), 1162–1177 (2009)

44

[13] Ghaemi, P., Shahabi, K., Wilson, J.P., Banaei-Kashani, F.: Optimal net-
work location queries. In: Proc. of GIS (2010)

[14] Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching.
In: Proc. of SIGMOD, pp. 47–57 (1984)

[15] Huang, J., Wen, Z., Qi, J., Zhang, R., Chen, J., He, Z.: Top-k Most
Influential Location Selection. In: Proc. of CIKM (2011)

[16] Korn, F., Muthukrishnan, S.: Influence Sets Based on Reverse Nearest
Neighbor Queries. In: Proc. of SIGMOD (2000)

[17] Liu, X., Wu, X., Wang, H., Zhang, R., Bailey, J., Ramamohanarao, K.:
Mining distribution change in stock order streams. In: ICDE, pp. 105–108
(2010)

[18] Mouratidis, K., Papadias, D., Papadimitriou, S.: Medoid Queries in Large
Spatial Databases. In: Proc. of SSTD, pp. 55–72 (2005)

[19] Nutanong, S., Tanin, E., Zhang, R.: Incremental evaluation of visible near-
est neighbor queries. TKDE 22(5), 665–681 (2010)

[20] Nutanong, S., Zhang, R., Tanin, E., Kulik, L.: Analysis and evaluation
of v*-knn: an efficient algorithm for moving knn queries. VLDB J. 19(3),
307–332 (2010)

[21] OpenStreetMap: http://www.openstreetmap.org/ (2013)

[22] Qi, J., Zhang, R., Kulik, L., Lin, D., Xue, Y.: The Min-dist Location
Selection Query. In: Proc. of ICDE (2012)

[23] Qi, J., Zhang, R., Wang, Y., Xue, A., Yu, G., Kulik, L.: The min-dist
location selection and facility replacement queries. World Wide Web pp.
1–33 (2013)

[24] Roussopoulos, N., Kelley, S., Vincent, F.: Nearest Neighbor Queries. In:
Proc. of SIGMOD, pp. 71–79 (1995)

[25] Shang, S., Yuan, B., Deng, K., Xie, K., Zhou, X.: Finding the Most Acces-
sible Locations - Reverse Path Nearest Neighbor Query in Road Networks
Categories and Subject Descriptors. In: Proc. of GIS (2011)

[26] SouFang: http://www.soufun.com (2013)

[27] Stanoi, I., Riedewald, M., Agrawal, D., Abbadi, A.E.: Discovery of Influ-
ence Sets in Frequently Updated Database. In: Proc. of VLDB (2001)

[28] Sun, Y., Huang, J., Chen, Y., Zhang, R., Du, X.: Location selection for
utility maximization with capacity constraints. In: Proc. of CIKM (2012)

[29] Tao, Y., Lian, X.: Reverse kNN Search in Arbitrary Dimensionality. In:
Proc. of VLDB (2004)

45

[30] trulia: http://trulia.com (2013)

[31] Vaidya, P.M.: AnO(n logn) Algorithm for the All-Nearest-Neighbors Prob-
lem. Discrete and Computational Geometry 4(1) (1989)

[32] Wong, R.C.W., Özsu, M.T., Fu, A.W.C., Yu, P.S., Liu, L., Liu, Y.: Max-
imizing bichromatic reverse nearest neighbor for L p -norm in two- and
three-dimensional spaces. The VLDB Journal 20(6), 893–919 (2011)

[33] Wong, R.C.w., Ozsu, M.T., Yu, P.S., Fu, A.W.c., Liu, L.: Efficient Method
for Maximizing Bichromatic Reverse Nearest Neighbor. In: Proc. of VLDB
(2009)

[34] Wu, W., Yang, F., Chan, C.Y., Tan, K.L.: FINCH : Evaluating Reverse
k-Nearest-Neighbor Queries on Location Data. In: Proc. of VLDB (2008)

[35] Xia, T., Zhang, D., Kanoulas, E., Du, Y.: On Computing Top-t Most
Influential Spatial Sites. In: Proc. of VLDB (2005)

[36] Yan, D., Wong, R.C.w., Ng, W.: Efficient Methods for Finding Influential
Locations with Adaptive Grids. In: Proc. of CIKM, pp. 1475–1484 (2011)

[37] Yang, C., Lin, K.i.: An index structure for efficient reverse nearest neighbor
queries. In: Proc. of ICDE, pp. 485–492 (2001)

[38] Yu, C., Zhang, R., Huang, Y., Xiong, H.: High-dimensional knn joins with
incremental updates. GeoInformatica 14(1), 55–82 (2010)

[39] Zhang, D., Du, Y., Xia, T., Tao, Y.: Progressive Computation of the Min-
Dist Optimal Location Query. In: Proc. of VLDB (2006)

[40] Zhang, J., Mamoulis, N., Papadias, D., Tao, Y.: All-Nearest-Neighbors
Queries in Spatial Databases. In: Proc. of SSDM, pp. 297–306 (2004)

[41] Zhang, R., Jagadish, H.V., Dai, B.T., Ramamohanarao, K.: Optimized
algorithms for predictive range and knn queries on moving objects. Inf.
Syst. 35(8), 911–932 (2010)

[42] Zheng, K., Huang, Z., Zhou, A., Zhou, X.: Discovering the Most Influential
Sites over Uncertain Data : A Rank Based Approach. IEEE TKDE (2011)

46

