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Abstract—The Top-N recommendation task aims to recom-
mend users the items they like most. Generative Adversarial
Net (GAN) has achieved good results on recommendation, which
learns user-item matrix by a generative adversarial training
process. There are two main scenarios, pointwise scenarios
and pairwise scenarios. However, for recommendation, GANs
in pairwise scenarios perform not as well as these in pointwise
scenarios. As pairwise rank is a position-independent algorithm,
it does not consider Top-N ranking sufficiently. Recommendation
task is position-dependent. Especially the Top-N item ranking
accuracy is much more important than the ranking accuracy
of the tail item. In this paper, we propose LambdaGAN for
Top-N recommendation. LambdaGAN introduces lambda rank
into generative adversarial training process in order to consider
the ranking information of the item. The proposed model
enables generative adversarial training in pairwise scenarios
available for recommendation by optimizing the rank based
metrics directly. Moreover, we adjust lambda function according
to the characteristics of recommendation. Two new designed
lambda functions are proposed. Experimental results show that
LambdaGAN outperforms state-of-the-art algorithms including
BPR, PRFM, LambdaFM and IRGAN in terms of four standard
evaluation metrics on two widely used datasets, Movielens-100K
and Netflix.

Index Terms—Top-N Recommendation, Generative Adversar-
ial Training, Pairwise Rank

I. INTRODUCTION

Recommendation System (RS) is designed to recommend
users the items they may like. Because of the huge amount of
items in the recommendation task, the Top-N tasks have more
practical significance, which can provide users with the items
they like most [1].

In the traditional recommendation model, LambdaFM is
one of the state-of-the-art models [2]. Based on [3], [4],
LambdaFM combines lambda rank [5] with Factorization
Machine (FM) [4] and optimizes the rank based metrics di-
rectly. That makes it very effective in Top-N recommendation.

*Hai-Tao Zheng is the corresponding author.

Although a series of recommendation models represented
by LambdaFM have achieved impressive results, the above
methods are all trained by a single traditional FM model which
can not achieve optimal performance sometimes.

At the same time, the excellent performance of deep learn-
ing also provides a better way to further improve the per-
formance of recommendation models. Information Retrieval
Generative and Discriminative model (IRGAN) [6] unifies
traditional generative model and discriminative model into
a minimax game in the information retrieval task. These
two models’ performance gets improved by the process of
adversarial learning. IRGAN has achieved very excellent ex-
perimental results in recommendation. However, it is worth
noticing that, GANs [8] for recommendation in pairwise
scenarios perform not as good as these in pointwise scenarios.
The reason is that pairwise rank does not perform well in
the recommendation task. Because pairwise rank is position-
independent, an incorrect pairwise item pair at the bottom of
the list and the one at the top of the list are equally important
for pairwise scores [2]. In other words, pairwise loss is not
the optimal for the Top-N recommendation task.

In this paper, we propose LambdaGAN for Top-N recom-
mendation. The proposed model applies lambda strategy into
generative adversarial training. And our model is optimized
by the rank based metrics directly. So we can make gener-
ative adversarial training in pairwise scenarios available for
recommendation. In addition, we rewrite the original lambda
functions to suit the characteristics of recommendation. Two
new designed lambda function are proposed. Our work and
contributions are mainly listed as follows:

• We are the first one to combine lambda strategy with
generative adversarial learning in pairwise scenarios, and
apply our model (LambdaGAN) to Top-N recommenda-
tion. This combination can improve the performance of
Top-N Recommendation.



• we explore the limitations of original lambda rank in
the recommendation task and propose two new lambda
functions. These two lambda functions serve as penalty
and reward parameters for pairwise learning respectively.

• Experimental results show LambdaGAN significantly
outperforms the other strong baseline methods includ-
ing BPR [7], PRFM [3], LambdaFM and IRGAN on
Moivelens-100K and Netflix in terms of four rank based
evaluation metrics.

The rest of this paper is origanized as follows. In Section II, we
review the related work on recommendation. In Section III, we
present the adversarial learning for item recommendation and
describe the lambda strategy. Two versions of LambdaGAN
will be proposed. In Section IV, we present the experimental
results of LambdaGAN and the other baseline methods. In
Section V, we conclude our work.

II. RELATED WORK

The method presented in this paper is mainly based on Gen-
erative Adversarial Nets(GAN) [8] and Learning to Rank(LtR)
techniques. In this part we briefly review the application of
these two parts in recommendation system and show the
differences from our methods.

Generative Adversarial Nets for Recommendation. GAN
has achieved impressive results in the field of computer vision
[9]–[11], sequence generation [12] and data mining [13], [14].
The work related to us is [6]. It proposes the information
retrieval model based on the generative model and discrim-
inative model together with playing a minimax game. At the
same time, impressive experimental results have been achieved
on these three tasks (Web Search, Item Recommendation and
Question Answering). Our work is different from IRGAN
mainly in several aspects. There are two versions of IRGAN:
IRGAN-pointwise and IRGAN-pairwise. However, IRGAN
only performs the recommendation tasks in pointwise scenar-
ios. One possible reason is that pairwise rank is insensitive
to item positions of the ranking list, but the recommendation
tasks are more concerned with the Top-N item list than the
whole item ranking list. Based on the above problem, we
introduce the lambdaRank into generative adversarial training
process for recommendation.

Learing to Rank. There are two main methods in the field
of LtR, pairwise [7], [15]–[17] and listwise methods [18]–[20]
respectively. The goal of pairwise optimization is to reduce
the number of wrong item pairs. It does not directly optimize
the Top-N items in recommendation. Pairwise learning is a
suboptimal solution for recommendation. On the other hand,
evaluation metrics such as NDCG [17] and MAP [20] are dis-
continuous, so we cannot directly use the traditional stochastic
gradient descent method for optimization. Inspired by lambda
rank, we propose lambda strategy to optimize pairwise rank so
that the algorithm focuses on the Top-N item list. LambdaFM
is a work which uses lambda strategies to optimize PRFM
in recommendation [2]. The difference between him and our
work is that: first, we introduce lambda strategy into generative
adversarial nets for recommendation. Second, because of the

different usage scenarios, we have applied a new lambda
function based on the adversarial learning.

III. METHODOLOGY

In this section, we encapsulate adversarial learning in pair-
wise scenarios for recommendation. Then we describe the
lambda strategy and propose two versions of LambdaGAN.

A. Adversarial Learning in Pairwise Scenarios

GAN consist of a generator G and a discriminator D
that compete in a minimax game with two players. The
performance of G and D are improved by the feedback from
each other during the training process.

Generative retrieval model Pθ(i|u, r), which tries to gener-
ate (or predict) relevant items, from the candidate pool for the
given user u; in other words, its goal is to approximate the
true relevance distribution over items Ptrue(i|u, r) as much as
possible.

Discriminative retrieval model fφ(u, i), which, by contrast,
tries to discriminate ground truth user-item tuples (u, i) from
faked ones, where the goodness of matching given by fφ(u, i)
depends on the relevance of item to user; in other words,
its goal is to distinguish between favourite items and non-
favourite items for the user u as accurately as possible. In fact,
it is a binary classifier, and we could use 1 as the class label
for the user-item tuples that truly match (positive examples)
while 0 as the class label for those that do not really match
(negative examples).

1) Overall Objective: The discriminator tries to distinguish
real high-related items on training data from recommendation
list predicted by G, and the generator tries to fool the discrimi-
nator to generate (or predict) well-ranked recommendation list.
Formally, we have minimax game in pointwise scenarios:

JG
∗,D∗ = min

θ
max
φ

N∑
n=1

(Ed∼ptrue(i|un,r)[logD(i|un)+

Ed∼pθ(i|un,r)[log(1−D(i|un))])
(1)

Where pθ(i|un, r) represents the generative retrieval model
and the discriminative retrieval model D(i|un) shows the
probility of the item i being selected by user u, which is given
by the sigmod function of the relevance score:

D(i|u) = σ(fφ(u, i)) =
exp(fφ(u, i))

1 + exp(fφ(u, i))
(2)

In recommendation task, fφ(u, i) is replaced by a scoring
function. Collaborative filtering method is the one of the most
widely used methodologies which aims to find the similarity
of user to user or item to item. Therefore, our scoring function
of the preference of user u to item i can be given by :

fφ(u, i) = s(u, i) = bi + ν>u νi (3)

Where bi is the bias term of item i, νu, νi ∈ Rk are the
latent vectors of user u and item i defined in a k-dimensional
continuous space respectively.



2) optimizing discriminative model: The objective of dis-
criminative model D is to maximize the probability of cor-
rectly distinguishing the ground truth items from the generated
recommendation items. With the ground truth items, and the
items given by the current optimal generative model G, we can
obtain the optimal parameters for the discriminative model :

φ∗ = arg max
φ

N∑
n=1

(Ed∼ptrue(i|un,r))[log(σ(bi + ν>unνi))]+

Ed∼pθ∗ (i|un,r)[log(1− σ(bi + ν>unνi))]
(4)

The above can be solved by stochastic gradient descent.
3) optimizing Generative model: Different to discriminative

model, the generative model aims to minimize the objective.
It tries to fit the true distribution of items i for user u, and
given the generated items from the whole item list to cheat
the discriminative model. The generative model G can be
optimized by minimizing the following formulation:

θ∗ = arg min
θ

N∑
n=1

(Ed∼ptrue(i|un,r)[logσ(bi + ν>unνi)]+

Ed∼pθ(i|un,r)[log(1− σ(bi + ν>unνi))])

= arg max
θ

N∑
n=1

Ed∼pθ(i|un,r)[log(1 + exp(bi + ν>unνi)))]︸ ︷︷ ︸
denote as JG(un)

(5)
Since the sampling of recommendation list by G is discrete,

which cannot be optimized by gradient descent as in the
original GAN formulation. So we use policy gradient based
reinforcement learning [12], [21] to optimize the Generative
model. The results are as follows:

∇θJG(un)

= ∇θEd∼pθ(i|un,r)[log(1 + exp(bi + ν>unνi))]

' 1

K

K∑
k=1

∇θlogpθ(ik|un, r)log(1 + exp(bi + ν>unνik))

(6)

Where ik denotes the k-th items sampled by the current
version of generative model G. With reinforcement learning
technology, log(1 + exp(bi + ν>unνik)) acts as the reward for
the policy pθ(i|un, r) taking an action i in the environment
un [22].

In pairwise scenarios, we take the positive feedback item
given by users as positive sample ip, the others in the list
as negative sample iq . Thus we have the labelled item pairs
Rn = {〈ip, iq〉|ip � iq} where ip � iq means user prefers the
item ip to the item iq .

The generator model G aims to produce item pairs with the
correct ranking. In contrast, the discriminator model D aims
to distinguish real item pairs from the faked ones created by
generator. The discriminator model in pairwise scenarios is
rewritten as :

D(〈ip, iq〉|u) = σ(fφ(ip, u)− fφ(iq, u))

=
exp(fφ(ip, u)− fφ(iq, u))

1 + exp(fφ(ip, u)− fφ(iq, u))

(7)

Algorithm 1 Adversarial Learning for Recommendation in
Pairwise Scenarios
Input: generator pθ(i|u, r); discriminator fφ(u, i); training
datasets S

1: Initialize pθ(i|u, r), fφ(u, i) with random weights θ, φ.
2: pre-train generator: Pθ(i|u, r) and discriminator: fφ(u, i)

using S
3: repeat
4: for g-steps do
5: pθ(i|u, r) generates K possible liked items for

each user u
6: Update generator parameters via policy gradient
7: end for
8: for d-steps do
9: Use current generator pθ(i|u, r) to generate nega-

tive examples and combine with given positive example S
to form a new training Sets S

′

10: Train discriminator fφ(u, i) by Eq.(9)
11: end for
12: until algorithm converges

Where fφ(u, i) is a scoring function for recommendation.

fφ(u, i) = s(u, i) = bi + ν>u νi (8)

Then we have the following minimax game in pairwise sce-
narios:

JG
∗,D∗ = min

θ
max
φ

N∑
n=1

(Eo∼ptrue(o|un)[logD(o|un)]+

Eo′∼pθ(o′ |un)[1− logD(o
′
|un)])

(9)
where o = 〈ip, iq〉 and o

′
= 〈i′pi

′

q〉 are real and generated
item pairs for user un respectively. Pθ(i|u, r) is the generative
model and Ptrue(i|u, r) is the true relevance distribution over
items.

Algorithm 1 summarizes the overall process of adversarial
learning in pairwise scenarios for item recommendation. We
first pre-train the parameters of generator and discriminator.
Then, in the processing of adversarial learning, generator
and discriminator have a better performance with the implict
feedback given by each other.

B. Lambda Strategy

As shown in Fig. 1, Fig. 1(b) has one more pairwise error
than Fig. 1(c). However, the value of NDCG for Fig. 1(b) is
0.798 higher than 0.525 in Fig. 1(c), which means the rank list
of Fig. 1(b) has a better performance than Fig. 1(c). Thus, this
shows that pairwise rank is not the optimal method for the Top-
N recommendation task. Based on Fig. 1(c), the black solid
arrow and the red dotted one represent two ways to minimize
the pairwise error in next iteration. The black arrow moves two
positive items from 3rd and 6th to 2nd and 4th respectively.
The red arrow moves two positive items from 3rd and 6th to
1st and 5th respectively. After these two optimizations, the red
arrow increases NDCG value by 0.325, and the black arrow



Algorithm 2 Adversarial Learning for Recommendation with
Lambda Strategy (LambdaGAN)
Input: generator pθ(i|u, r); discriminator fφ(u, i); training
datasets S

1: Initialize pθ(i|u, r), fφ(u, i) with random weights θ, φ.
2: pre-train generator: Pθ(i|u, r) and discriminator: fφ(u, i)

using S
3: repeat
4: for g-steps do
5: pθ(i|u, r) generates K possible liked items for

each user u
6: Update generator parameters via policy gradient
7: end for
8: for d-steps do
9: Use current generator pθ(i|u, r) to generate nega-

tive examples and combine with given positive example S
to form a new training Sets S

′

10: Train discriminator fφ(u, i) with lambda strategy
by Eq. (11)

11: end for
12: until LambdaGAN converges

only increases NDCG value by 0.126. We find that reducing
the same pairwise error has a different effect on NDCG.

Therefore, pairwise method is not the optimal method in
recommendation. Because the importance of Top-N items and
the items at the end of the whole item list are different.
To overcome the above challenges, Lambda-based methods
have been proposed by optimizing the ranking biased metrics
directly such as NDCG [23]. Inspired by lambda rank, we
propose a similiar lambda function as f(D(〈ip, iq〉|u), ζu)
where ζu is the current item ranking list for user u. Taking
the NDCG as target, f(D(〈ip, iq〉|u), ζu) is given

f(D(〈ip, iq〉|u), ζu) = D(〈ip, iq〉|u)|∆NDCGp,q| (10)

where ∆NDCGp,q represents difference of NDCG after
the position of item p and item q get switched. Algorithm
2 summarizes the overall process of LambdaGAN. We take
Eq. (10) as a new discriminative model for LambdaGAN, then
we have the following minimax game:

JG
∗,D∗ = min

θ
max
φ

N∑
n=1

(Eo∼ptrue(o|un)[f(D(o|u), ζu)]+

Eo′∼pθ(o′ |un)[1− f(D(o
′
|u), ζu)])

(11)
However, it should be noted that the application scenarios of

lambda rank is that the candidate document list is relatively
small in the typical IR tasks. The candidate item list in
recommendation is much larger than the candidate document
list of IR tasks. For each item pair, the time to calculate
∆NDCGp,q is O(Tr), where Tr is the time required for
the current model to calculate an item rank list for the user.
This time complexity is unacceptable in recommendation. On
the other hand, since the number of items in the item list

Fig. 1. Three different item list for a given user. Blue blocks represent items
that the user gives positive feedback, and gray blocks represent items that
the user gives negative feedback. Fig. 1(a) shows the ideal ordering of items,
Fig. 1(b) and Fig. 1(c) represent the predicting item list given by the model
respectively. Fig. 1(b) has 7 pairwise errors by moving positive item to 9th.
Fig. 1(b) has 6 pairwise errors by moving the two positive items to 3rd and
6th respectively. Black solid arrow and red dotted arrow represent two ways
to minimize the pairwise error.

is very large (see the detail of datasets in next section), the
magnitude of ∆NDCGp,q in typical IR tasks is 10−1 while
the magnitude turns to 10−4 ∼ 10−6 in the most cases of
recommendation. This leads to slower convergence of the
algorithm and lowers the efficiency, which means the original
lambda method is impractical for recommendation. Hence,
following the idea of lambda rank, we redesign the lambda
functions below.

C. Two Versions of LambdaGAN

Observing Fig. 1, we find that the value of NDCG will
be significantly improved by moving the positive item from
bottom into top of the rank list. Compared to the case of
positive items in high rank, we pay more attention to the
positive item in low rank. Therefore, for each item pair, we
introduce two lambda function versions to replace the original
|∆NDCGp,q|.

1) LambdaGAN V1: We use a reweighting term λ(r(i)) to
represent the different lambda weights for each item pairs dur-
ing training process. We replace |∆NDCGp,q| with Eq. (12)

λ(r(i)) =

∑r(i)
n=0

1
n+1∑I

n=0
1

n+1

(12)

r(i) represents the ranking position of positive item i, I
represents the whole item set. The denominator can be viewed
as a normalization term for the entire formula. When r(i) is
small, that is, the positive item i has a high rank in the item
list. The value of λ(r(i)) will become smaller, so that this
update will not cost too much loss. When r(i) is big, that is,
the positive item i is at the bottom of the item list. The value
of λ(r(i)) will become bigger, so that this update will push
the positive items up from the bottom. Thus we have a new



discriminative model:

f(D(〈ip, iq〉|u), ζu)

= λ(r(i))D(〈ip, iq〉|u)

=

∑r(i)
n=0

1
n+1∑I

n=0
1

n+1

˙exp(fφ(ip, u)− fφ(iq, u))

1 + exp(fφ(ip, u)− fφ(iq, u))

(13)

2) LambdaGAN V2: In the previous section, we replace
original |∆NDCGp,q| with λ(r(i)). The range of λ(r(i)) is
( 1
n+1 , 1]. This value is less than 1, so we can think of the
λ(r(i)) as a penalty for pairwise learning. When the positive
item has a high rank, it will be punished less and not cost
loss too much. On the contrary, when the positive item has a
low rank, the value will be larger to update the gradient with a
greater magnitude. From this perspective, we would like to see
if lambda parameters can be used as bonus items in pairwise
learning (greater than 1).

τ(r(i)) = αλ(r(i)) = α

∑r(i)
n=0

1
n+1∑I

n=0
1

n+1 (14)

Thus we have a new discriminative model:

f(D(〈ip, iq〉|u), ζu)

= τ(r(i))D(〈ip, iq〉|u)

= α

∑r(i)
n=0

1
n+1∑I

n=0
1

n+1

˙exp(fφ(ip, u)− fφ(iq, u))

1 + exp(fφ(ip, u)− fφ(iq, u))

(15)

The range of τ(r(i)) is (1, α]1. This value is greater than
1, we regard τ(r(i)) as a bonus for pairwise learning. When
the positive item ranked at the bottom of item list, τ(r(i))
will assign a lager weight to the gradient, pushing the positive
item to the top. Fig. 2 illustrates the value difference between
lambda function version 1 and version 2. The main difference
between the two versions of the lambda function is their range
of values. Version 1 always acts as the penalty of pairwise
learning, with the corresponding, version 2 always acts as the
reward of pairwise learning.

IV. EXPERIMENTS

In this section, to evaluate the effectiveness of LambdaGAN,
we conduct experiments on two real world datasets.

A. Experimental Setup

1) Datasets: We use two widely used collaborative filtering
datasets: Movielens-100K2 and Netflix3. Consistent with the
dataset processing of [6], we treat ’5-star’ ratings in Netflix
and both ’4-star’ and ’5-star’ ratings in Movielens as positive
feedback, and regard all the other items in the item list as
negative feedback. In dataset partitioning, we follow the same
procedures as in [17], [24]. We use the standard 5-fold cross
validation. The ratio of the training set to the test set for each
experiment is 4:1. The average results over 5 folds is taken

1The default value of α is set to 1.25, this parameter will be discussed in
the following section

2https://grouplens.org/datasets/movielens/100k/
3https://www.kaggle.com/netflix-inc/netflix-prize-data

0 1000 2000 3000 4000 5000
r(i)

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu
e 
of
 L
am

bd
a

LambdaGAN_V1
LambdaGAN_V2

Fig. 2. The value difference between lambda function version 1 and version
2. The number of items (I) is set to 5,000 and the value of α is set to 1.25
in version 2.

as the final performance. The statistics of the preprocessed
datasets are shown in Table I.

TABLE I
CHARACTERISTICS OF THE DATASETS.

MovieLens-100K Netflix

Users 943 480,189
Items 1,683 177,700
Ratings 100,000 100,480,507

2) Baseline Methods: In our experiments, we compare our
model with four baseline algorithms.
BayesianPersonalisedRanking(BPR). BPR [7] is a

Bayesian personalized ranking learning model for implicit
preference data, which is a strong baseline for Top-N rec-
ommendation.
PairwiseRankingFactorizationMachine(PRFM).

PRFM [3] is one of the state-of-the-art recommendation
algorithm. It combines pairwise rank with factorization
machine for a better performance in recommendation.
LambdaFM. It is a powerful Top-N recommendation base-

line [2], which directly optimizes the rank biased metrics. We
run the LambdaFM model with open source code4.
IRGAN. This model5 train generative model and discrimi-

native model alternatively through adversarial processing [6].
3) Implementation Details: we pre-train G and D using

training data. L2 regularization is set to 0.05. The learing
rate is set to 1 × 10−3 on Movielens dataset, 1 × 10−4 on
Netflix. Batch size is set to 32 and 128 for Movielens and
Netflix respectively. The number of sampled items (K) is set
to 5 and 20 for Movielens and Netflix respectively. In order

4https://github.com/fajieyuan/LambdaFM
5https://github.com/geek-ai/irgan



TABLE II
ITEM RECOMMENDATION RESULTS (MOVIELENS-100K).

Precision@3 Precision@5 Precision@10 NDCG@3 NDCG@5 NDCG@10 MAP MRR

BPR 0.3056 0.2912 0.2633 0.3158 0.3092 0.3009 0.1668 0.4817
PRFM 0.3290 0.3162 0.2750 0.3364 0.3291 0.3126 0.1808 0.4979
LambdaFM 0.3852 0.3561 0.3136 0.4023 0.3828 0.3650 0.2137 0.5899
IRGAN 0.3845 0.3711 0.3189 0.3959 0.3885 0.3665 0.2440 0.5836

LambdaGAN V1 0.3940 0.3693 0.3151 0.4050 0.3893 0.3671 0.2419 0.5848
LambdaGAN V2 0.4189 0.3952 0.3294 0.4351 0.4203 0.3888 0.2562 0.6214

Impv 8.75% 6.49% 3.29% 8.15% 8.19% 6.08% 5.00% 5.33%

TABLE III
ITEM RECOMMENDATION RESULTS (NETFLIX).

Precision@3 Precision@5 Precision@10 NDCG@3 NDCG@5 NDCG@10 MAP MRR

BPR 0.3271 0.3350 0.3208 0.3184 0.3264 0.3198 0.1772 0.5061
PRFM 0.3560 0.3256 0.2999 0.3765 0.3497 0.3233 0.1820 0.6001
LambdaFM 0.4017 0.3670 0.3165 0.4172 0.3890 0.3462 0.2031 0.6223
IRGAN 0.4096 0.3654 0.3154 0.4090 0.3681 0.3135 0.1712 0.5907

LambdaGAN V1 0.3860 0.3391 0.2890 0.3932 0.3592 0.3172 0.2011 0.5887
LambdaGAN V2 0.4393 0.3911 0.3259 0.4350 0.3996 0.3408 0.2154 0.5971

Impv 7.25% 6.57% 1.59% 4.27% 2.72% 6.06%

to ensure the fairness and comparability of the experimental
results, the three algorithms (IRGAN, LambdaGAN V1 and
LambdaGAN V2) use the same set of hyperparameters. The
rest of baseline algorithms find the optimal hyperparameters
by grid search.

4) Evaluation Metrics: To quantitatively evaluate our
method, we adopt four rank-based evaluation metrics to
measures the performance of Top-N recommendation. There
are Precision@N, Normalised Discounted Cumulative Gain
(NDCG@N) [17], [25], Mean Average Precision (MAP) [20]
and Mean Reciprocal Ranking (MRR) [19]

B. Experimental Results

Table II and Table III demonstrate the performance of
all algorithms on the two datasets. Several conclusions can
be made by analyzing the experimental results. Algorithms
(IRGAN, LambdaGAN V1 and LambdaGAN V2) based
on generative adversarial nets (GAN) generally outperform
traditional algorithms (BPR, PRFM and LambdaFM) in
most metrics. It shows that adversarial training process can
improve the performance of recommendation model. The
LambdaFM algorithm using the lambda strategy also achieves
good experimental results at the same time.

In Table II, LambdaGAN V1 and LambdaGAN V2
outperform the other baseline methods. For example,
LambdaGAN V2 gains as much as 6.49% on Precision@5
and 8.19% on NDCG@5 over strong baselines. It shows
that directly optimizing the rank biased metrics with GAN
loss can further enhance the performance of recommendation
model.
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Fig. 3. Performance comparsion with respect to Precision@N, NDCG@N
(Netflix).

In Table II and Table III, LambdaGAN V2 outperforms
LambdaGAN V1 on all evaluation metrics. It indicates that
lambda function performs better as being a reward than being
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Fig. 4. Learining curves of LambdaGAN (Movielens).

a penalty in pairwise learning. In Table III, LambdaGAN V2
significantly performs better than other methods including
LambdaGAN V1, while LambaFM performs better than
LambdaGAN V1 in Precision@N and NDCG@N. This
also shows that LambdaGAN V2 has better algorithm
performance. In order to give a more intuitive display of
the experimental results, we visualize the Precision@5,
NDCG@5 in Fig. 3.

On the other hand, the improvement of Precision@3
(8.75%, 7.25%) is greater than Precision@5 (6.49%, 6.57%),
similarly, the improvement of Precision@5 is greater than
Precision@10 (3.29%, 1.59%). This law is almost identical
on NDCG. The higher rating in the training set, the more
likely the item is selected by LambdaGAN. It shows that
the ranks of positive items have gained promotion in the
recommendation list. Optimizing rank-based metrics directly
can improve the model’s performance.

1) Learning Curves: In order to better understand training
process of adversarial learning, we visualize the learning
curves of two versions of LambdaGAN as shown in Fig. 4.
Due to the limited space, we only plot the precision@5
and NDCG@5. The learning curves of other metrics are
similar. As can be seen from Fig. 4, LambdaGAN V2
achieves the best performance earlier within 50 epochs. In
contrast, LambdaGAN V1 needs more than 100 epochs to
reach optimal in NDCG@5. LambdaGAN V2 performance
better than LambdaGAN V1. This is because the term of
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Fig. 5. Learining curves of LambdaGAN Ori (Movielens).

TABLE IV
ITEM RECOMMENDATION RESULTS OF LAMBDAGAN ORI(MOVIELENS).

Precision@5 NDCG@5 MAP MRR

LambdaGAN V1 0.3693 0.3893 0.2419 0.5848
LambdaGAN V2 0.3952 0.4203 0.2562 0.6214

LambdaGAN Ori 0.2351 0.2561 0.1312 0.4474

LambdaGAN V2 is always greater than 1, which allows
LambdaGAN V2 to achieve optimality earlier and converge
faster.

2) Comparison with the original lambda function: In
order to compare the performance of original lambda function
applied in LambdaGAN, called LambdaGAN Ori for short,
with LambdaGAN V1 and LambdaGAN V2. We implement
the experiment with LambdaGAN Ori on Movielens-100K.
The experimental results are shown in Table IV. Moreover,
Fig. 5 demonstrates the learning curve of LambdaGAN Ori.
As shown in Fig. 5, LambdaGAN Ori still can not achieve
good results after hundreds of epochs. That is because the
original lambda function is originally used in the typical IR
tasks, and the typical IR tasks are quite different from the
Top-N recommendation tasks. In order to slove this problem,
we adjust lambda function according to the characteristics
of Top-N recommendation and proposed two new designed
lambda functions.

3) Parameter Tuning: In LambdaGAN V2, we propose the
parameter α. Fig. 6 illustrates Precision@5 and NDCG@5
performance changes by tuning α. The model obtains best
performance when α is set to 1.25. When α is set to 1, the
value of lambda term is 1, lambda rank degenerates to pairwise
learning. When the value of α gradually increases from 1 to
1.75, the performance of model is increased first and then
decreased. We set the alpha value to 1.25 in this paper. To the
best of our knowledge, the value of previous lambda functions
is from 0 to 1, which can be regarded as penalties for pairwise
learning. This paper proposed a new lambda function as a
reward. The experiment also shows that LambdaGAN V2 has
a better effect.
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V. CONCLUSION AND FUTURE WORK

This paper proposes a novel model in adversarial learning
with lambda strategy for recommendation (LambdaGAN).
This method combines the advantages of adversarial training
and lambda rank. Besides, We modify the original lambda rank
function and propose two new lambda function to meet the
needs of the recommendation task. Experimental results show
that LambdaGAN outperforms the other strong baselines in
terms of four standard evaluation metrics.

In the future work, applying LambdaGAN to other scenarios
such as web research and question answering is a direction
worth studying.
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