
ReadMe of the Code of iDistance

Beta version 1

Rui Zhang

rui@csse.unimelb.edu.au

http://www.csse.unimelb.edu.au/∼rui

Department of Computer Science

and Software Engineering,

The University of Melbourne,

Carlton, Victoria, Australia, 3053

2006

1

1 Paper related to this code

Rui Zhang, Panos Kalnis, Beng Chin Ooi, Kian-Lee Tan: Generalized Multi-

dimensional Data Mapping and Query Processing, ACM Transactions
on Data Base Systems (TODS), 30(2), 364-397, 2005.

2 Copyright

Version 1 (Beta Test)
Copyright (c) Rui Zhang, 2005-2006.

Permission is hereby given for the use of the code subject to the following
conditions:

1. The library will not be sold for profit without explicit written permission
from Rui Zhang.

2. This copyright notice and author information will not be altered.

3. No redistribution of the code is allowed.

4. All bug fixes will be returned to the rui@csse.unimelb.edu.au inclusion in
future releases.

3 Implementation Notes

Cui Yu has contributed to an older version of the code when she was in National
University of Singapore.

4 How to Use the Code

4.1 Compilation

The code was compiled on Fedora 2 and can be compiled on most Linux and
Unix systems. Use the command “make” to compile.

4.2 Follow the following steps to run the code

Please follow the steps below to run the code:

1. Suppose the dimensionality is 30, then change file “btree.h”: #define D
30;

2. Suppose the number of reference points is 64, then change file “btree.h”:
#define ClusterNumber 64;

2

3. Data file and query file are both binary files which consist of float points
sequentially. Change the variable “fp data” in file “knn.c” to point to
the data file and “fp query” to point to the query file. You can search
“define data file here” and “define query file here” to locate where they
are defined.

4. Reference points are stored as a text file called “reference” in the directory.
In file “knn.c”, the variable “fp reference” points to this file of reference
points. How to choose reference points? If the dataset is uniformly dis-
tributed, reference points are also uniform. If the dataset is skewed or
clustered, first find cluster centers, these centers are used as reference
points. We have used 64 as the default number of reference points. How-
ever, larger numbers could be even better. Note that different choice of
reference points may result in different performance. k-means clustering
is suggested to find the cluster centers.

5. The value “K” in KNN (that is, the number of nearest neighbors re-
quested) is set in file “knn.c”. For example, #define K 10. By default K
is 10.

6. The number of queries is set in file “knn.c”. For example, #define NO-
QUERY 200. By default NOQUERY is 200.

7. After setting all the above, run “make” to compile the code. The exe-
cutable is named “Idist”.

8. Build the index by running “Idist b”.

9. When building index is completed, some information like the following
appears:
————————–
idistance>nn b Root of b+ tree is created Splitting at root level ************
Note: Offset of new root : 0offset of new root2109440 The tree is set up.
Root: 2109440 Left most leaf node: 8192 Max top of Stack : 4

btreeinfo done
—————————

10. Run the KNN search by “Idist”, the results are written in the text file
“result”. The average page access number and query processing time are
shown at the end of the file.

5 Optimization Notes

1. Internal nodes of the B+-tree are load into memory before the queries.
The internal nodes are less than 0.3% of the whole index, which can fit
into memory. The time for loading is counted as running time. To test
the effect of buffer, the code needs to be touched up.

3

2. Nodes of the B+-tree can be compacted by the function compact() to a
higher node utilization rate, which is set by the constant “compactrate”
in file “btree.h”. E.g. “#define compactrate 0.9” means the utilization
rate is 0.9. Another way to achieve high utilization is by using a B*-
tree style insert/delete, which is not implemented in this B+-tree yet. If
compactrate is set less than 0, no compaction would be conducted.

3. For KNN search, the initial search radius and the increasing amount of
the search radius are set by two parameters “r0” and “dr” in the file
“btree.h”. Now r0 is set as 0.5·Mindist, where Mindist is the distance
between the query and the nearest reference point. And dr=0.005. r0
may be optimized by estimating the final search radius and dr can be set
accordingly, such as 5% of r0.

4

