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Abstract We propose and study a new type of location optimization problem, the min-dist
location selection problem: given a set of clients and a set of existing facilities, we select
a location from a given set of potential locations for establishing a new facility, so that the
average distance between a client and her nearest facility is minimized. The problem has a
wide range of applications in urban development simulation, massively multiplayer online
games, and decision support systems. We also investigate a variant of the problem, where we
consider replacing (instead of adding) a facility while achieving the same optimization goal.
We call this variant the min-dist facility replacement problem. We explore two common ap-
proaches to location optimization problems and present methods based on those approaches
for solving the min-dist location selection problem. However, those methods either need to
maintain an extra index or fall short in efficiency. To address their drawbacks, we propose
a novel method (named MND), which has very close performance to the fastest method but
does not need an extra index. We then utilize the key idea behind MND to approach the
min-dist facility replacement problem, which results in two algorithms names MSND and
RID. We provide a detailed comparative cost analysis and conduct extensive experiments on
the various algorithms. The results show that MND and RID outperform their competitors
by orders of magnitude.

Keywords Spatial database · geographic information system · location optimization ·
min-dist metric

1 Introduction
Location optimization is an important problem for spatial decision support systems. A num-
ber of studies [4,5,25,30] proposed solutions to various instances of such problems. In this
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paper, we consider a new location optimization problem that cannot be efficiently solved by
existing techniques. The problem is motivated by the following applications.

In urban development simulation, urban planners need to consider the influence of public
infrastructure or business centers on the residents. Very often they need to establish a new
facility (e.g., fire hydrant, hospital, bus stop) or replace an existing one. When selecting the
location for the new facility (or the facility to be replaced), a commonly used criterion is to
select the location (or the facility and the location for replacement) that can minimize the
average distance between a resident and her nearest facility so that people can access the
facilities in the shortest time.

In the multi-billion dollar computer game industry, massively multiplayer online games
(MMOGs) like World of Warcraft have many non-player characters (NPCs) like monsters
to fight with the players. Very often the game server needs to generate a new NPC for the
fighting. If the new NPC is placed randomly, there may be no player around it at all and
this will be a waste of the limited computational resource of the game server. A very helpful
utility for the game server is selecting a starting point for the NPC from a set of preset
locations to minimize the average distance between a player and her nearest NPC, so that
the players can find NPCs closer and do not get bored walking around trying to find an NPC
to fight with. As the players keep moving around and/or leaving the game, an existing NPC
may become too far away to be seen by the players. In this case the game server may want
to move the NPC to re-balance the NPCs and the players, i.e., move the NPC to a place to
again minimize the average distance between a player and her nearest NPC.
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Fig. 1 An example of the studied problems

Fig. 1 gives an example: {c1, c2, ..., c8} is a set of clients (residents or players), {f1, f2}
is a set of existing facilities (public facilities or NPCs) and {p1, p2} is a set of potential
locations (candidate locations for facility establishment or NPC placement). Currently, f1 is
the nearest facility of c1, c2, c3 and c6; f2 is the nearest facility of c4, c5, c7 and c8.

We consider two scenarios. (i) We select one of the potential locations to establish a new
facility. If a new facility is established at p1, it will become the nearest facility for c1, c2
and c3. If it is established at p2, it will become the nearest facility of c4 and c5. As we can
observe, p2 results in a smaller average distance between a client and her nearest facility,
so it is selected as the answer. (ii) We select an existing facility and a potential location for
facility replacement. There are four possible choices, i.e., f1 → p1, f1 → p2, f2 → p1
and f2 → p2, where “→” denotes “to be replaced with”. Here, the choice is not so obvious
because when replacing a facility, some of the clients can get a closer facility while some
others may get a further one. For example, if f1 is replaced with p1, c1, c2 and c3 will get
a closer facility, while c6 will have a further facility. The crux is to efficiently compute the
aggregate effect. In this example, replacing f2 by p2 (f2 → p2) can minimize the average
distance between a client and the nearest facility. Therefore, it is selected as the answer.
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Besides the above described applications, many organizations and businesses face simi-
lar decision making problems (e.g., a bank needs to add or replace ATMs; a wireless service
provider needs to set up or replace hotspots). This paper studies how to efficiently select a
location for new facility establishment or a pair of facility and location for facility replace-
ment, so that the average distance between a client and her nearest facility is minimized. We
call the two problems the min-dist location selection problem and the min-dist facility re-
placement problem, respectively. In the aforementioned applications, the location selection
or facility replacement may be performed frequently. Thus, we formulate the two problems
as the following queries.

1.1 Problem Formulation

All data objects (clients, facilities and potential locations) are represented by points in a
Euclidean space. We may refer to the data objects as data points or simply as points. Let
dist(o1, o2) denote the distance between two points o1 and o2, and nc be the number of
clients. The min-dist location selection query is defined as follows.

Definition 1 Min-dist location selection query.
Given a set of points C as clients, a set of points F as existing facilities and a set

of points P as potential locations, the min-dist location selection query finds a potential
location p ∈ P for a new facility to be established at, so that ∀p′ ∈ P ,

∑
c∈C{min {dist(c, o)|o ∈ F ∪ {p}}}

nc

≤
∑

c∈C{min {dist(c, o)|o ∈ F ∪ {p′}}}
nc

.

Similarly, the min-dist facility replacement query is defined as follows.

Definition 2 Min-dist facility replacement query.
Given a set of points C as clients, a set of points F as existing facilities and a set

of points P as potential locations, the min-dist facility replacement query finds a pair of
existing facility and potential location, denoted by f and p respectively, so that ∀⟨f ′, p′⟩ ∈
F × P, ∑

c∈C{min {dist(c, o)|o ∈ F \ {f} ∪ {p}}}
nc

≤
∑

c∈C{min {dist(c, o)|o ∈ F \ {f ′} ∪ {p′}}}
nc

.

Since the denominator is the same on both sides of the inequalities, the problems are
equivalent to minimizing the sum (instead of the average) of the distances between the
clients and their respective nearest facilities.

Although an existing commercial software [1] can solve several simpler location opti-
mization problems, none can solve the min-dist location selection or facility replacement
problems (see Section 2 for more discussion).
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1.2 Contributions and Organization of the Paper

In this article, we examine solutions to the min-dist location selection query and the min-dist
facility replacement query, and make the following contributions.

– We formulate the min-dist location selection problem and the min-dist facility replace-
ment problem.

– We explore two common approaches to location optimization problems and propose
methods based on them for solving the location selection problem.

– As methods based on the common approaches either need to maintain an extra index
or fall short in efficiency, we propose a method called MND for the location selection
problem, which uses a single value to describe a region that encloses the nearest existing
facilities of a group of clients, so that the search of influenced clients for a potential loca-
tion can be done groupwise. This results in an algorithm that has very close performance
to the fastest of the previous algorithms without the need for an extra index.

– We extend the idea of MND further and propose two algorithms named MSND and RID
to solve the facility replacement problem.

– We provide a thorough cost analysis of all methods.
– We conduct extensive experiments to evaluate the empirical performance of all methods.

The results validate the superiority of MND and RID over the other methods.

This article is an extended version of our earlier paper [18]. There we proposed the min-
dist location selection problem and studied algorithms to solve the problem. In this article,
we extend our work by investigating an important problem variant, the min-dist facility
replacement problem. We propose two algorithms to solve the problem. The challenge here
is a search space cubically proportional to the size of the datasets to be accessed to find the
optimal facility-location pair for the replacement. To address the challenge, we transform
the expensive search into two operations: a lightweight cubical search plus two lightweight
quadratic search. We extend our cost analysis to the newly proposed algorithms and perform
additional experiments on them. The results show that the algorithms can solve the min-dist
facility replacement problem efficiently.

The rest of the article is organized as follows. Section 2 reviews related work. Section 3
studies the min-dist location selection problem and describes algorithms to solve the prob-
lem. Section 4 investigates solutions to the min-dist facility replacement problem. Section 5
analyzes the cost of the proposed algorithms. Section 6 presents the experimental results and
Section 7 concludes the article.

2 Related Work
Location optimization problems are mostly characterized by optimization functions, based
on which they can be classified into two categories: max-inf problems and min-dist prob-
lems. Both categories are closely related to nearest neighbor (NN) search and reverse nearest
neighbor (RNN) search. Therefore, we first review studies of NN search and RNN search,
and then review studies of max-inf problems and min-dist problems.

NN Search and RNN search: Given a set of objects S and a query object q, the
NN search returns q’s nearest objects in S. Two popular NN search algorithms are depth-
first [19] and best-first [10]. The best-first algorithm can retrieve the nearest neighbors incre-
mentally in order of their distances to the query point. Various studies have been conducted
on variants of the NN search, such as visible NN queries [15], kNN joins [29], moving kNN
queries [16,17] and predictive kNN queries [31].

As one of the major variants, Korn and Muthukrishnan [13] first propose the RNN query
and define the RNNs of an object o to be the objects whose respective NN is o. They propose
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to use an R-tree variant, named the RNN-tree, in addition to the original R-tree that main-
tains the data points to answer RNN queries. In an RNN-tree, the data entries are stored in
the form of NN circles. An NN circle of a point o is a circle centered at o with the distance
between o and its NN as the radius. The bounding boxes of these NN circles are indexed in
the RNN-tree. An RNN query is answered with the data points whose NN circles enclose
the query point. To avoid maintaining the RNN-tree, Yang and Lin [27] propose the RdNN-
tree, which effectively combines the original R-tree and the RNN-tree. While these methods
require the precomputation of the distance between an object and its NN, Stanoi et al. [21]
propose a method without precomputation. For a query point q, their method dynamically
constructs a Voronoi cell that encloses q and contains all its possible RNNs. Only nodes in-
tersecting the Voronoi cell have to be accessed to check for q’s RNNs. While these methods
work well for a single RNN query, they are not for computing RNNs of large amount of ob-
jects at the same time, which is a key difficulty in our study. There are studies on RNN query
variants under different settings. For example, the reverse k nearest neighbor (RkNN) query
finds objects whose k nearest neighbors include the query object. Wu et al. [24] study the
RkNN query on continuously moving objects, which correlates two sets of moving objects
according to their closeness. The continuous join query on extended moving objects [32,
33] also correlates multiple sets, but it focuses on intersecting objects with a time-constraint
technique rather than closeness. While these approaches work well for a single R(k)NN
query, they are not tailored for computing RNNs for a large amount of objects at the same
time, which is a key difficulty in our study. There are studies on processing a large amount
of objects at the same time, e.g., the group NN query [6] and the convoy query [12], which
query the NNs of a group of query objects together and groups of objects that have trav-
eled together, respectively. However, these studies are of quite different settings, and their
methods do not apply.

Max-inf problems: Max-inf problems maximize the “influence” of a facility, where
influence is typically defined as the number of clients who are the RNNs of the facility.
Cabello et al. [4] find regions for a new facility to maximize its influence. They introduce
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Fig. 2 Example of a max-inf problem [4]

the nearest location circle (NLC) to solve the problem, where the NLC of a client c is a circle
centered at c with its radius being the distance between c and the nearest existing facility of
c. Since only a facility established within the NLC of c can be a new nearest facility of c,
to find the problem solution is to find the regions that are enclosed by the largest number of
NLCs. In Fig. 2, the gray regions are the problem solution because each of them is covered
by four NLCs while no region is covered by more than four NLCs. Cabello et al.’s study
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only gave a theoretical analysis for the problem. Wong et al. [23] study this problem further
and propose a method to reduce the complexity of finding regions overlapped by the largest
number of NLCs. Xia et al. [25] use a branch and bound method to find top-t facilities in
F with the largest influence within a continuous spatial region Q, where the influence of a
facility is defined as the total weight of its RNNs. Du et al. [7] find a location in a region Q
for a new facility to maximize its influence. Gao et al. [8] find a location p outside a region
Q (instead of inside a region) for a new facility so that its “optimality” is maximized. Here,
the optimality of p is defined as a function of the number of clients in Q whose distance
to p is within a certain threshold dc (attracted by p). Intuitively, the more clients p attracts,
the greater its optimality. A more recent study [11] selects top-k candidate locations with
the largest influence values for a new facility. These studies differ from ours in optimization
functions and other settings. Their solutions do not apply.

Min-dist problems: Zhang et al. [30] propose the min-dist optimal-location problem.
Given a client set C, an existing facility set F and a region Q, it finds points within Q so that
if a new facility is established at any one of these points, the average distance of the clients
to their respective nearest facilities is minimized. Fig. 3 gives an example, where pt may
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Fig. 3 Example of a min-dist problem [30]

be one of the points in the answer set and it is not the solution p2 to our location selection
problem. To solve the problem, Zhang et al. [30] propose a method that first identifies a set L
of candidate locations from Q and then divides L progressively until the answer set is found.
Xiao et al. [26] study the min-dist problem in road networks. They have a candidate edge
set E for the new facility to be established at. Their key insight is that the optimal location
on a candidate edge must be one of the endpoints of the edge. Thus, only the endpoints of
the edges in E need to be checked for the problem solution.

These two studies [30,26] have the same min-dist optimization function as ours, but our
study has a set P , the potential locations given as candidates for selection or replacement.
In many real applications, we can only choose from some candidate locations, e.g., a bank
may only set up a new ATM at or relocate an existing ATM to a place for rent or sale rather
than anywhere in a region or on a road. The main idea of Zhang et al.’s solution is the
fast identification of a small set L of candidate locations from Q. However, the candidate
locations in L could be any point from Q, which may not even contain a potential location
from our potential location set P . Similarly, the endpoints of the edges in E [26] are different
from the points in P . This means that in general their approaches cannot provide a correct
answer to our problems, and thus are not applicable.

Related commercial software: As mentioned in Section 1, an existing commercial soft-
ware [1] can solve several kinds of simpler location optimization problems. The most related
problem this software can solve is called the minimize impedance query, which finds loca-
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tions for a set of new facilities to minimize the sum of distances between clients and their
respective nearest facilities. However, this problem does not consider existing facilities. If
we use this software to find a set of locations Sl for new facilities, there is no guarantee that
Sl will contain all points in the set of existing facilities F . Therefore, this software does not
solve the problems we study.

In computational geometry, given a set C of objects (e.g., clients), the k-medoid query [14]
finds a set of medoids C′ ⊆ C with cardinality k that minimizes the average distance from
each object c ∈ C to its closest medoid in C′. The k-median query is a variant, where we
find k locations called the medians, not necessarily in C, to minimize the average distance
(from each object c ∈ C to its closest median). These two types of queries are actually using
the min-dist metric. However, our problem is different from both of them. A fundamental
difference is that these problems do not assume a set F or a set P , but we do.

Table 1 The Location Optimization Problems

Problem Optim. Solution Distance Datasets
Function Space Function

[4] Max-inf Continuous L2 C, F
[23] Max-inf Continuous L2 C, F , P
[25] Max-inf Discrete L2 C, F
[7] Max-inf Continuous L1 C, F
[8] Max-inf Discrete L2 C, P
[11] Max-inf Discrete L2 C, F , P
[30] Min-dist Continuous L1 C, F
[26] Min-dist Continuous Network C, F , E
[14] Min-dist Discrete L2 C
[1] Min-dist Discrete L2 C, P
Proposed Min-dist Discrete L2 C, F , P

Summary: Table 1 summarizes the differences between our problems and previously
studied location optimization problems. Most previous problems are max-inf problems and
differ from our problems in optimization functions. For the min-dist problems, they have the
same optimization function as ours, but their problem settings are different. As discussed in
the second paragraph of the related min-dist problems, they do not choose from a set of
given candidate locations, which does not apply to the requirements of our applications.

3 The Min-dist Location Selection Query
In this section we present algorithms to process the min-dist location selection query. Straight-
forwardly, the query can be processed as follows. We sequentially check all potential loca-
tions and for every new potential location p, we compute the sum of the distances of all
clients to their respective nearest facilities. The potential location with the smallest sum is
the answer. We call this algorithm the sequential scan (SS) algorithm.

In SS, repeatedly finding the nearest facility to each client for every potential location is
too expensive. Therefore, we precompute the distances of all clients to their respective near-
est facilities and store the distances. This precomputation involves a nested loop iterating
through every client and for every client iterating through every facility. KNN-join algo-
rithms (e.g., [29]) can do this more efficiently and maintain the results dynamically when
clients and facilities are updated. The SS algorithm with precomputation is shown in Al-
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Algorithm 1: SS(C, P )
1 optLoc← NULL; // optLoc is the optimal location;
2 for p ∈ P do
3 p.distSum← 0;
4 for c ∈ C do
5 if dist(p, c) < c.dnn(c, F ) then
6 p.distSum← p.distSum+ dist(p, c);

7 else
8 p.distSum← p.distSum+ c.dnn(c, F );

9 if optLoc = NULL or p.distSum < optLoc.distSum then
10 optLoc← p;

11 return optLoc;

gorithm 1, where c.dnn(c, F ) denotes the precomputed distance between c and her closest
existing facility. The distance is stored with the record of c.

We see that even with precomputation SS is still very costly as it has to access the whole
client dataset np

Cp
times, where np is the cardinality of P and Cp is the capacity of a block

for P (assuming we read P in disk blocks). Therefore, the need for an efficient algorithm is
obvious.

We observe that the min-dist location selection query can be redefined in a form that
reduces the search space and thus accelerates query processing. Next, we provide the redef-
inition and a solution framework based on it. Then we present algorithms under the solution
framework to process the query.

3.1 Problem Redefinition and a Solution Framework

We start with some basic properties of the problem needed for the redefinition. Table 2
summarizes frequently used symbols.

3.1.1 Problem Redefinition

We call the distance between a client c and her nearest facility the nearest facility distance
(NFD) of c. Let dnn(o, S) denote the distance between a point o and its nearest point in a
set S. Then dnn(c, F ) and dnn(c, F ∪ {p}) denote the NFD of c before and after a new
facility is established on a potential location p, respectively. The min-dist location selection
query is actually minimizing the sum of all clients’ NFD.

If o is a point not in the set F and dist(c, o) < dnn(c, F ), then establishing a new
facility at o will reduce the NFD of c. In this case, we say that c can get an NFD reduction
from o. We define the influence set of o, denoted by IS(o), as the set of clients that can
get NFD reduction from o. Formally, IS(o) = {c|c ∈ C, dist(c, o) < dnn(c, F )}. The
influence set of a potential location p includes all clients that will reduce their NFD if a new
facility is established at p. For example, in Fig. 1, IS(p1) = {c1, c2, c3}, and IS(p2) =
{c4, c5}.

If IS(p) ̸= ∅ for a potential location p, then establishing a new facility at p will reduce
the sum of the clients’ NFD. We call the sum of the clients’ NFD reduced by p the distance
reduction of p, denoted by dr(p). Formally, dr(p) =

∑
c∈IS(p)(dnn(c, F )− dnn(c, F ∪

p)). Minimizing the sum of the clients’ NFD when adding a facility on p is equivalent
to maximizing dr(p). Therefore, the min-dist location selection query can be redefined as
follows.
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Table 2 Frequently Used Symbols

Symbols Explanation

o A point in the data space
dist(o1, o2) The distance between two points o1 and o2
C, F , P The set of clients, existing facilities

and potential locations, respectively
nc, nf , np Cardinality of C, F , and P , respectively
c, f, p A client in C, an existing facility in F

and a potential location in P , respectively
RC , RP , RF R-trees on C, P , and F , respectively
NC , NP , NF A node of RC , RP , and RF , respectively
ec, ep, ef An entry of RC , RP , and RF , respectively
dnn(c, F ) The nearest facility distance of c
IS(f), IS(p), IS(⟨f, p⟩) The influence sets of f , p, and ⟨f, p⟩, respectively
dr(f), dr(p), dr(⟨f, p⟩) The distance reduction of f , p, and ⟨f, p⟩, respectively
dr(⟨f, p⟩, c) The distance reduction achieved for c by ⟨f, p⟩
NFC(c) The nearest facility circle of c
MND(c) The maximum NFC distance of c
SNFC(c) The second nearest facility circle of c
MND(c) The maximum second NFC distance of c
RID(c) The replacement influence distance of c

Definition 3 Given a set of points C as clients, a set of points F as existing facilities and a
set of points P as potential locations, the min-dist location selection query finds a location
p ∈ P , so that ∀p′ ∈ P : dr(p) ≥ dr(p′).

3.1.2 A Solution Framework

Definition 3 provides a framework for solving the min-dist location selection problem with
the following two steps:

1. Identify IS(p);
2. Compute dr(p) and find the potential location with the largest dr(p).

Since the cardinality of IS(p) is usually much smaller than that of C, we do not have to
access the whole client dataset for every potential location p. Thus, the above framework has
a great potential to improve performance. All methods presented in this section will follow
this framework. The key issues are: (i) how to efficiently identify IS(p) and (ii) how to prune
more potential locations from consideration. We will see that in all methods dnn(c, F ) of
every client is used many times in both steps of the framework. Computing dnn(c, F ) on-
the-fly will repeatedly access the datasets of the clients and the existing facilities, which will
incur significant costs. Therefore, we precompute dnn(c, F ) for every client and store it
with the client’s record for all methods (including the SS method).

In the next subsection, we explore two common approaches to location optimization
problems and propose methods based on those approaches for solving the min-dist location
selection problem under the above framework. When a spatial index is used, we assume an
R-tree [9], although any hierarchical spatial index could be used.

3.2 Quasi-Voronoi Cell Method

In this subsection, we propose a so-called “quasi-Voronoi cell” (QVC) method. For any
potential location p, the Voronoi cell of p on the set F ∪ {p} is a region V that satisfies that
for any point p′ ∈ F ∪ {p}, p′ ̸= p, and for any point o ∈ V , dist(p, o) ≤ dist(p′, o) [2].
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Fig. 4 Examples of the QVC method

It is guaranteed that the Voronoi cell of p encloses all and only the clients in IS(p). We
can use the Voronoi cell to quickly identify IS(p). However, computing the Voronoi cell
of p is an expensive operation. Stanoi et al. [21] show a relatively straightforward way to
compute a region that encloses the Voronoi cell and this region is a good approximation of
the Voronoi cell. We call this region the quasi-Voronoi cell (QVC). First, we find a superset
of IS(p) through the QVC of p. Then, we can use the precomputed NFD to quickly identify
the exact IS(p). Finally, we compute dr(p) and compare it for all potential locations. Next,
we give details of constructing QVC and the algorithms.

Algorithm 2: QVC(RC , RF , FP )
1 optLoc← NULL;
2 while not EndOfFile( FP ) do
3 BP ← ReadBlock( FP );
4 Sp ← ∅;
5 for p ∈ BP do
6 Contruct QV C(p) from RF ;
7 Contruct AIR(p), stores it as p.mbr;
8 if p.mbr intersects RC .rootnode.mbr then
9 Sp ← Sp ∪ p;

10 WQ( RC .rootnode, Sp, optLoc );

11 output optLoc;

In the coordinate system with the origin at p and the two axes parallel to the original
axes, we find the nearest facility to p in each of the four quadrants and let these nearest
facilities be f1, f2, f3 and f4 as shown in Fig. 4(a). We draw the bisector between each fi
(i = 1, 2, 3, 4) and p, and the four bisectors form a polygon. This polygon is the QVC of p,
denoted as QV C(p). To find the NN in each quadrant, we use the best-first algorithm [10]
to retrieve the NNs until each quadrant has one. Since this algorithm is based on a spatial
index, we use an R-tree to index the facilities, denoted as RF . Once we have QV C(p), we
perform a window query on an R-tree named RC that indexes the clients with the query
range being the minimum bounding rectangle (MBR) of QV C(p) (Fig. 4(b)). Then we can
further compute dr(p) and determine the optimal potential location. The QVC method is
summarized in Algorithms 2 and 3.
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Algorithm 3: WQ(NC , Sp, optLoc)
1 if NC is a leaf node then
2 for p ∈ Sp do
3 for ec ∈ NC , dist(p, ec) < ec.dnn(c, F ) do
4 p.dr ← p.dr + ec.dnn(c, F )− dist(p, ec);

5 if optLoc = NULL or p.dr > optLoc.dr then
6 optLoc← p;

7 else
8 for ec ∈ NC do
9 S′

p ← ∅;
10 for p ∈ Sp, p.mbr intersects ec.mbr do
11 S′

p ← S′
p ∪ p;

12 WQ(ec.childnode, S′
p, optLoc);

3.3 Nearest Facility Circle Method

In this subsection, we propose a method that exploits the nearest facility circle (NFC), and
we call it the NFC method. The nearest facility circle of a client c, denoted by NFC(c), is a
circle centered at c with the radius being dnn(c, F ). For a potential location p, c ∈ IS(p) if
and only if p is inside NFC(c). As shown in Fig. 5, p1 is in the NFCs of c1, c2 and c3, and
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Fig. 5 Example of NFCs

p2 is in the NFCs of c4 and c5. Thus, IS(p1) = {c1, c2, c3} and IS(p2) = {c4, c5}. We
only need to check which NFCs enclose p to identify the clients in IS(p). Motivated by this
observation, we build an RNN-tree [13], denoted as Rn

C , to index the NFCs of all clients.
The tree Rn

C is basically an R-tree that indexes the MBRs of the NFCs of the clients. It can
be built based on RC and maintained in accordance to the updates of RC .

Besides having an RNN-tree to index the NFCs, this method also uses an R-tree to
index the potential location set P , denoted as RP . Then for every potential location p, we
can use Rn

C to quickly identify all NFCs that enclose p, which is essentially a point query
on an R-tree. We need to do this for all the potential locations indexed in RP , which makes
the process a spatial join between P and all NFCs. The spatial join operation finds out all
intersected pairs between two sets of objects. In our case, when P is a set of points, the
spatial join returns for every p, the set of NFCs that enclose p. Then we can identify IS(p)
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using the clients corresponding to the NFCs that enclose p and compute dr(p). We use
a standard R-tree based join algorithm [3] to join RP and Rn

C , which results in the NFC
algorithm. The pseudo-code of the algorithm has been listed in [18] and is omitted here to
keep the paper concise.

3.4 Maximum NFC Distance Method

We have presented two methods based on common approaches to location optimization
problems. However, those methods both have some drawbacks. The QVC method needs to
perform a KNN search to find a nearest facility in each quadrant for every potential location,
which is expensive. The NFC method is simple and efficient, but needs to maintain an ex-
tra index, Rn

C . In dynamic environments, insertions and deletions on data occur frequently.
Maintaining two indexes on the dataset C makes database management such as concurrency
control more complicated and brings significant overheads. Therefore, having the extra in-
dex has been considered as a serious drawback in the solutions to other types of location
optimization problems [21,27,22,28]. We also view the extra index for the NFC method as
a serious drawback.

In this subsection, we propose a novel method that is simple and efficient, but requires
no extra index, so it overcomes the drawbacks of the QVC and NFC methods. This method
still exploits the idea of NFCs. However, unlike the NFC method, which uses an MBR to
bound the NFCs of all clients in a node of RC and physically stores all these MBRs in a
separate tree (Rn

C ), this method uses just one value to describe a rounded rectangular region
around a node NC that encloses the NFCs of all clients in NC , and stores that value in the
parent entry of NC in RC . Therefore, this method avoids using another tree but achieves the
same purpose. A challenge in this method is to define a value for delimiting a region that
can enclose the NFCs of all clients in a node NC of RC as tight as possible.

3.4.1 The Maximum NFC Distance

We propose to use a value with respect to a node called the maximum NFC distance (MND),
denoted as MND(NC) for a node NC . The intuition is that given the NFCs of the clients
indexed by a node NC , we find a point from these NFCs whose distance to the MBR of NC

is the largest. This largest distance defines MND(NC). If the minimum distance between
NC and a node NP in RP (the R-tree on the set of potential locations) is larger than or equal
to MND(NC) (i.e., minDist(NC , NP ) ≥ MND(NC)), then for any potential location
p in NP , no client in IS(p) is from sub(NC) since no point in the MBR of NP will be
enclosed by the NFC of any client in sub(NC), where sub(NC) denotes the set of clients
contained in the subtree rooted at NC . In what follows, we first formally define MND and
then explain it in detail.

Given a leaf node NC in RC and the clients indexed in NC , we find a client ci in-
dexed in NC and a point oi on the boundary of NFC(ci), so that for any other point
oj on the NFC of any client indexed in NC , minDist(oi, NC) ≥ minDist(oj , NC),
where minDist(o,N) denotes the minimum distance between two objects (either points or
MBRs). Then we define MND(NC) as minDist(oi, NC). The metric MND(NC) de-
limits a rounded rectangular region such that for any point o on its boundary, minDist(o,NC) =
MND(NC) (cf. Fig. 6(a)). We call this region the MND region of NC .

For non-leaf nodes, MND is defined recursively in a bottom-up manner. Given a non-
leaf node NC in RC and the child nodes of NC , we find a point oi on the boundary of
the MND region of a child node Ni, so that for any other point oj on the boundary of the
MND region of a child node Nj , minDist(oi, NC) ≥ minDist(oj , NC). Then we define
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MND(NC) as minDist(oi, NC), and it delimits the MND region of NC , the rounded
rectangular region in Fig. 6(b).

3.4.2 The Algorithm

The definition of the MND region of NC guarantees that this region must be intersected by
a node NP in RP if sub(NC) ∩ IS(p) ̸= ∅, where p is a potential location in the subtree
rooted at NP . If this region is not intersected by NP , then sub(NC) ∩ IS(p) = ∅ and we
can discard the whole subtree of NC when identifying IS(p). This observation, formalized
in Theorem 1, is the pruning strategy of the MND method.

Theorem 1 Let p be a potential location indexed in the subtree rooted at NP , and let
minDist(NC , NP ) be the minimum distance between the MBRs of two nodes NC and
NP . Then, sub(NC) ∩ IS(p) = ∅ if minDist(NC , NP ) ≥ MND(NC).

Proof See reference [18].

Theorem 1 suggests that we only need to check whether the distance between NC and
NP is less than MND(NC) to determine whether any client c ∈ sub(NC) is in IS(p) for
any potential location p enclosed by NP . Like the other methods, we use an R-tree to index
the clients, but in addition, we store the MND value of a node Nm

C in its parent entry emc ,
denoted as emc .mnd. To distinguish this R-tree from the normal R-tree on C, we denote it as
Rm

C . The algorithm for processing the query mimics a spatial join on the two R-trees, Rm
C

and RP . We traverse the two trees simultaneously and compare every node from Rm
C with

every node from RP , starting from the roots. As we traverse down the tree, we compare
a node pair (NP , N

m
C ) only if minDist(NP , N

m
C ) < MND(Nm

C ); this condition can
be checked before retrieving Nm

C since MND(Nm
C ) is stored in the parent entry of Nm

C .
When the traversal of the two trees finishes, all nodes that may contain points in IS(p) are
checked and hence we obtain IS(p). Algorithm 4 details the steps.

3.4.3 Efficient Computation of the Maximum NFC Distance

The definition of MND does not give an efficient way for its computation. According to the
definition, MND can be computed straightforwardly as follows. Suppose Nm

C is a leaf (or
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Algorithm 4: MND(NP , Nm
C , optLoc)

1 if NP and Nm
C are non-leaf nodes then

2 for (ep, emc ) ∈ NP ×Nm
C , minDist(emc , ep) < emc .mnd do

3 MND(ep.childnode, emc .childnode, optLoc);

4 else if NP is a leaf node and Nm
C is a non-leaf node then

5 for emc ∈ Nm
C , minDist(emc , NP ) < emc .mnd do

6 MND(NP , emc .childnode, optLoc);

7 else if NP is a non-leaf node and Nm
C is a leaf node then

8 for ep ∈ NP , minDist(Nm
C , ep) < Nm

C .mnd do
9 MND(ep.childnode, Nm

C , optLoc);

10 else
11 for (ep, emc ) ∈ NP ×Nm

C , minDist(emc , ep) < emc .mnd do
12 ep.dr ← ep.dr + emc .dnn(c, F )− dist(emc , ep);

13 if ep.dr > optLoc.dr or optLoc = NULL then
14 optLoc← ep;

non-leaf) node. We compute for every client c (or child node N ) indexed by Nm
C the largest

minDist(o,Nm
C ) value for a point o on the boundary of NFC(c) (or MND region of N ),

denoted as maxMinDist(c,Nm
C ) (or maxMinDist(N,Nm

C )). Since the MND region
of Nm

C should enclose the NFCs (or MND regions) of all children of Nm
C , MND(Nm

C )
is computed as the largest maxMinDist value among all these children’s maxMinDist
values. However, minDist(o,Nm

C ) is a piecewise function based on the relative position
of a point o and the MBR of Nm

C . The computation of the maxMinDist values requires
computing the maxima of a piecewise function with two variables. This is typically obtained
by numerical methods, which are iterative methods and there is no guarantee on the number
of iterations needed to find the solution. Therefore, the computation cost is very high and
unpredictable.

Next, we propose a much more efficient method to compute the MND. The key observa-
tion is that the MND can be derived from those points on the boundary of NFC(c) (MND
region of a child node N ) that are the “farthest” to Nm

C , and we can limit our search for the
“farthest” point within a set of four candidate farthest points (CFPs) described as follows.

Fig. 7(a) illustrates the CFPs for a client c indexed in a leaf node Nm
C . In the figure, M

denotes the MBR of Nm
C ; R denotes NFC(c); the center point O of R is located at c and

the radius r denotes the NFD of c. A horizontal line Lh and a vertical line Lv intersect each
other at O, and they intersect R at Ih1, Ih2, Iv1 and Iv2, respectively. The four points Ih1,
Ih2, Iv1 and Iv2 are the CFPs of c. Similarly, Fig. 7(b) illustrates the CFPs for a child node
N of a non-leaf node Nm

C . In the figure, M1 denotes the MBR of N ; R denotes the MND
region of N ; r denotes MND(N) and O is the center point of R.

We denote the largest minDist(Ii, N
m
C ) value for the CFPs as maxMinDist(I,M),

where Ii denotes a CFP. Theorems 2 and 3 below states that one of the CFPs must be the “far-
thest” point from the boundary of NFC(c) (or the MND region of a child node N ) to Nm

C ,
i.e., maxMinDist(I,M) = maxMinDist(c,Nm

C ) (or maxMinDist(N,Nm
C )) if Nm

C

is a leaf node (or a non-leaf node). The intuition here is that we can divide the boundary of
NFC(c) (or the MND region of a child node N ) into a set of arc segments, and for each seg-
ment, there must be a CFP Ii such that for any point o on the segment, minDist(Ii, N

m
C ) ≥

minDist(o,Nm
C ). We find the CFP with the largest minDist(Ii, N

m
C ) value and it is the

“farthest” point from NFC(c) (or the MND region of N ) to Nm
C .
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Fig. 7 Candidate farthest points

Theorem 2 Given an MBR M , a circle R = (O, r) and a set I of four candidate far-
thest points, the largest minDist value from a point Q on the boundary of R to M ,
maxMinDist(R,M), equals to maxMinDist(I,M).

Proof See reference [18].

Theorem 3 Given two MBRs M and M1, the MND region R of M1 centered at O and a
set I of four candidate farthest points, the largest minDist value from a point Q on the
boundary of R to M , maxMinDist(R,M), equals to maxMinDist(I,M).

Proof See reference [18].

Theorems 2 and 3 provide an efficient way to compute the MND, which requires the
computation of the minDist values for the four CFPs. The specific steps are as follow.

We denote the coordinates of O as (Ox, Oy), and the coordinates of Ih1, Ih2, Iv1 and
Iv2 as (Ox − r,Oy), (Ox + r,Oy), (Ox, Oy + r) and (Ox, Oy − r), respectively. Let
M be (Mx−, Mx+, My−, My+) (“−” and “+” stand for lower bound and upper bound,
respectively). Then, minDist(Ih1,M) = Mx−− (Ox− r), minDist(Ih2,M) = (Ox+
r) − Mx+, minDist(Iv1,M) = (Oy + r) − My+ and minDist(Ih2,M) = My− −
(Oy − r). As a result, according to Theorem 2, we have:

maxMinDist(R,M) = max {Mx− − (Ox − r),
(Ox + r)−Mx+, My− − (Oy − r), (Oy + r)−My+}

(1)

Now we can compute maxMinDist(c,Nm
C ) with Equation (1) for a client c indexed

in a leaf node Nm
C and further compute MND(Nm

C ) as follows since it is defined as
max{maxMinDist(c,Nm

C )|c is a client indexed by Nm
C }.

MND(Nm
C ) = max {d1, d2, d3, d4}, where

d1 = max {cy + dnn(c, F )|c ∈ Nm
C } −max {cy|c ∈ Nm

C },
d2 = max {cx + dnn(c, F )|c ∈ Nm

C } −max {cx|c ∈ Nm
C },

d3 = min {cy|c ∈ Nm
C } −min {cy − dnn(c, F )|c ∈ Nm

C },
d4 = min {cx|c ∈ Nm

C } −min {cx − dnn(c, F )|c ∈ Nm
C }.
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According to Theorem 3, we can replace c by N and replace dnn by MND in the above
equation to obtain an equation for computing the MND value of a non-leaf node Nm

C , where
N denotes a child node of Nm

C and MND denotes its MND.

Compared with the straightforward MND computation approach, which requires an ex-
pensive iterative method for computing maxima, the above proposed method requires only
several arithmetic operations, which has a constant low cost. As the MND computation is
performed recursively in a bottom up manner, it resembles the procedure of MBR compu-
tation for R-tree construction and maintenance. Therefore, the MND computation can be
integrated straightforwardly into the standard R-tree procedures with negligible overhead.

Discussion. We notice that the RdNN-tree [27] has a similar structure to the tree we use
in the MND method to index the clients. In the RdNN-tree, a node N is associated with the
largest dnn value of all objects indexed in sub(N), while in the MND method, a node N is
associated with the MND value, which by definition is guaranteed to be in general smaller
than and at worst the same as the largest dnn value. Therefore, the pruning capability and
efficiency of the MND method is guaranteed to be better than a method using the RdNN-tree.

4 The Min-dist Facility Replacement Query

In this section we present algorithms to process the min-dist facility replacement query. We
first redefine the query to a similar form to the min-dist location selection query, so that
some of the the pruning techniques can be reused.

Definition 4 Given a set of points C as clients, a set of points F as existing facilities and a
set of points P as potential locations, the min-dist facility replacement query finds a pair of
existing facility and potential location, denoted by f and p respectively, so that ∀⟨f ′, p′⟩ ∈
F × P : dr(⟨f, p⟩) ≥ dr(⟨f ′, p′⟩).

Here dr(⟨f, p⟩) denotes the distance reduction if f and p are selected for the replace-
ment. Formally, dr(⟨f, p⟩) =

∑
c∈IS(⟨f,p⟩)(dnn(c, F )− dnn(c, F \ {f} ∪ {p})), where

IS(⟨f, p⟩) is a subset of clients whose nearest facilities change when f is replaced by p.

4.1 Sequential Scan Method

The redefined query can be processed with a sequential scan (SS-FR) algorithm. It scans
the set of clients to compute dr(⟨f, p⟩) for every pair of existing facility f and potential
location p and returns the pair with the largest dr.

For dr computation, we also want to reuse the precomputed dnn of the clients to avoid
repetitive client facility distance computation. However, dnn alone are not enough to pro-
duce accurate dr values. This is because, when f is replaced with p, the nearest facility of
a client c can change to a place that is not p, and thus, the distance reduction achieved for c
is not dnn(c, F ) - dist(c, p) any more. Fig. 8 gives an example. If we replace f2 with p1,
then the nearest facility of c2 changes to f3 instead of p1. The distance reduction of ⟨f2, p1⟩
gained for c2 is dnn(c2, F )− dist(c2, f3).

We observe that, when f is replaced by p, the nearest facility of c may stay unchanged, or
become either p or the existing second nearest facility (SNF) of c, depending on the relative
position of f , p, c and the SNF of c. We analyze the different cases and summarize the
computation of the distance reduction of ⟨f, p⟩ gained for c, dr(⟨f, p⟩, c), in the following
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Fig. 8 Computation of dr(⟨f, p⟩)

equation. Here, d2nn(c, F ) denotes the distance between c and its SNF.

dr(⟨f, p⟩, c) =


dnn(c, F )− dist(c, p), dist(c, p) ≤ dnn(c, F ) or (i)

(dist(c, F ) = dnn(c, F ) and dist(c, p) ≤ d2nn(c, F ))
dnn(c, F )− d2nn(c, F ), dist(c, F ) = dnn(c, F ) and (ii)

dist(c, p) > d2nn(c, F )
0, otherwise. (iii)

(2)

Here, case (i) says that, if p is closer to c than the existing nearest facility of c (cf. Fig. 8,
dr(⟨f1, p1⟩, c1)), or p is closer to c than the existing second nearest facility of c while f
is the existing nearest facility of c, (cf. Fig. 8, dr(⟨f2, p2⟩, c2)), then p will become the
new nearest facility of c after the replacement. Therefore, dr(⟨f, p⟩, c) = dnn(c, F ) −
dist(c, p). Cases (ii) and case (iii) say that, if p is not closer to c than even the existing
second nearest facility of c, then dr(⟨f, p⟩, c) is solely determined by f and c. If f is the
existing nearest facility of c (case (ii)), then dr(⟨f, p⟩, c) = dnn(c, F ) − d2nn(c, F ) (cf.
dr(⟨f2, p1⟩, c2), Fig. 8). Otherwise (case (iii)), then ⟨f, p⟩ will not affect c at all. Thus,
dr(⟨f, p⟩, c) = 0 (e.g., ⟨f3, p2⟩ and c1 in Fig. 8).

Based on Equation 2, we can precompute dnn and d2nn at the same time, and then
use them in the sequential scan method for dr computation. This will result in an algorithm
with a three layered nested loop, where the outer two layers iterate the facility-location pairs
while the inner most layer iterates the clients to compute dr values. The algorithm suffers
from low efficiency and poor scalability. In the following subsections, we explore pruning
techniques to reduce the search space and accelerate query processing.

4.2 Maximum SNFC Distance Method

We investigate techniques to restrict the search space for dr computation. The technique
we found mimics that of the MND method but also involves clients’ second nearest facility
circles (SNFC), which are circles on clients’ second nearest facilities (cf. Fig. 8). We call
the resultant method the Maximum SNFC Distance (MSND) method.

The MSND method is based on that, in Equation 2, only the clients satisfying cases (i)
and (ii) can contribute to dr(⟨f, p⟩). Thus, we can index the clients in an R-tree and then for
each facility-location pair, we perform a range query using the conditions in Equation 2 as
the predicate to retrieve the relevant clients for dr computation.

The range query will require the clients’ dnn and d2nn for predicate computation. Thus,
we need to store them in the R-tree and define distance metrics for the tree nodes to enable
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predicate computation. We apply the technique used in the MND method to build an R-tree
variant, Rs

C , to index the clients and bounding regions for their NFCs as well as SNFCs.
In Rs

C , the leaf nodes’ entries (the client points) store not only the dnn values (radii of the
NFCs) but also the d2nn values (radii of the SNFCs). The non-leaf nodes’ entries store the
MND values as well as the maximum SNFC distance (MSND) values for their child nodes.
Here, MSND is defined similarly to MND, but bounds the SNFCs instead of NFCs (cf.
Fig. 9).
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Fig. 9 Example of MSND

We need to do a range query for every pair of facility and location. We batch process
the range queries to accelerate query processing. Specifically, we read in the facilities and
potential locations in blocks. For each block, we compute a minimum bounding rectangle.
Then, for every pair of facility and potential location blocks, we use their bounding rectan-
gles in the range query on Rs

C to find all the relevant clients and therefore reduce the number
of tree accesses.

4.3 Replacement Influence Distance Method

The MSND method uses range queries to reduce the search space from F × P × C to
F ×P × C̃, where C̃ denotes a subset of C that are accessed by the range queries. This is a
search cubically proportional to the size of the datasets, which is large. Therefore, MSND is
better than Sequential Scan but still expensive. In this subsection, we propose to replace such
a cubical search with two lightweight quadratic search plus a lightweight cubical search, so
that we can obtain better query processing efficiency. The key is to examine only a small
number of promising facility-location pairs. To achieve this, we first compute the dr values
for the facilities and potential locations separately (two quadratic search), and then only
aggregate the dr values for the facility-location pairs where necessary (a lightweight cubical
search) to determine the optimal pair. We use a concept called the Replacement Influence
Distance (RID) to help identify the facility-location pairs that require dr value aggregation.
Therefore, we named the method based on RID the Replacement Influence Distance (RID)
method.

The motivation behind the RID method is that, instead of considering a pair of facility
and potential location ⟨f, p⟩ as a unit, we consider it as two independent parts and compute
dr(f) and dr(p) separately. This way, we can apply the MND method to efficiently com-
pute dr(f) and dr(p), and only pair up the promising facilities and potential locations to
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find the optimal pair. Here dr(f) denotes the distance reduction incurred by removing f ,
i.e., dr(f) =

∑
c∈IS(f)(dnn(c, F ) − d2nn(c, F )), where IS(f) is the subset of clients

attracted by f (note that dr(f) ≤ 0). Now the problem is to determine which are the promis-
ing facilities and potential locations. A pair of facility and potential location ⟨f, p⟩ with
large dr(f) and dr(p) values might be promising, but this is not always the case because
dr(⟨f, p⟩) is not always simply the sum of dr(f) and dr(p). We need to determine which
pairs satisfy dr(⟨f, p⟩) = dr(f) + dr(p) and which pairs do not, and perform range queries
to compute the dr values for the latter case. RID supports this determination process.

c2

c1

c3f1

f2

f3
p1

p2

RIC(f1)

f1.rid

d2nn(c2,F )

dnn(c2,F )

Fig. 10 Example of replacement influence circle

The RID of a facility f is defined as the the largest dnn and d2nn sum of the clients
attracted by f . Formally, f.rid = max{dnn(c, F ) + d2nn(c, F )|c ∈ IS(f)}. The RID
of f defines the Replacement Influence Circle (RIC) of f , denoted by RIC(f), which is a
circle centered at f with its radius being f.rid (cf. Fig. 10). If a potential location p is not
enclosed by RIC(f), then dr(⟨f, p⟩) = dr(f) + dr(p), as guaranteed by the following
Theorem 4.

Theorem 4 Given a pair of facility and potential location ⟨f, p⟩, dr(⟨f, p⟩) = dr(f) +
dr(p) if dist(f, p) > f.rid.

Proof The proof is straightforward. The RIC of f divides the data space into two parts.
Inside RIC(f), the clients’ new facilities after removing f are irrelevant to any object
outside RIC(f), and vice versa. If dist(f, p) > f.rid, then p is outside RIC(f). We can
then use dr(f) to compute the distance reduction grained for the clients inside RIC(f), and
dr(p) to compute the distance reduction grained for the clients outside RIC(f), separately.
Formally,

dr(⟨f, p⟩) =
∑

c∈IS(⟨f,p⟩)(dnn(c, F )− dnn(c, F \ {f} ∪ {p}))
=

∑
c∈IS(⟨f,p⟩)∩RIC(f)(dnn(c, F )− dnn(c, F \ {f} ∪ {p}))

+
∑

c∈IS(⟨f,p⟩)\RIC(f)(dnn(c, F )− dnn(c, F \ {f} ∪ {p}))
=

∑
c∈IS(f)(dnn(c, F )− d2nn(c, F ))

+
∑

c∈IS(p)(dnn(c, F )− dist(c, p))

= dr(f) + dr(p)

Now we can use an R-tree variant Rr
F to index the facilities and the bounding regions

of their RICs as what we have done to index the clients and the bounding regions of the
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NFCs. We use another R-tree variant Rr
P to index the potential locations, and then perform

a synchronous traversal on the two trees to quickly identify all the facility-location pairs that
require dr aggregation.

We further enhance the efficiency of the algorithm by storing dr(f) in Rr
F and dr(p) in

Rr
P . For the leaf nodes, the entries store the facilities (or potential locations) as well as their

respective dr values. For the non-leaf nodes, we store with an entry the largest dr value
of the facilities (or potential locations) indexed in the child node of the entry, denoted by
maxdr. Then we can perform the synchronous traversal on Rr

F and Rr
P in a branch and

bound fashion. We start the traversal at the root nodes. For every pair of nodes accessed, we
estimate an upper bound dru of the dr value for each pair of the entries ⟨erf , erp⟩ using the
following equation.

dru(⟨erf , erp⟩) =
{
maxdr(erp),mindist(erf , e

r
p) ≤ erf .rid (i)

maxdr(erf ) +maxdr(erp), otherwise (ii)

In this equation, case (i) says, if the minDist of erf and erp is less than or equal to erf .rid,
then according to Theorem 4, dr(⟨f, p⟩) of two objects f and p indexed in the subtrees of
erf and erp does not equal to dr(f)+dr(p). In this case, the best situation is that the removal
of f does not incur an increase of the dnn value of any client, and thus dr(⟨f, p⟩) is solely
determined by dr(p), i.e., dr(⟨f, p⟩) = dr(p). Therefore, an upper bound of the dr value
for erf and erp is computed as maxdr(erp). In case (ii), the minDist of erf and erp is larger
than erf .rid. By Theorem 4 we have an upper bound of the dr value for erf and erp computed
as maxdr(erf ) +maxdr(erp).

Algorithm 5: RID(Nr
F , N

r
P , R

s
C , optPair)

1 if Nr
F and Nr

P are non-leaf nodes then
2 for (erf , e

r
p) ∈ Nr

F ×Nr
P , dru(⟨erf , e

r
p⟩) > optPair.dr do

3 RID(erf .childnode, erp.childnode, Rs
C , optPair);

4 else if Nr
F is a leaf node and Nr

P is a non-leaf node then
5 for erp ∈ Nr

P , dru(⟨Nr
F , erp⟩) > optPair.dr do

6 RID(Nr
F , erp.childnode, Rs

C , optPair);

7 else if Nr
F is a non-leaf node and Nr

P is a leaf node then
8 for erf ∈ Nr

F , dru(⟨erf , N
r
P ⟩) > optPair.dr do

9 RID(erf .childnode, Nr
P , Rs

C , optPair);

10 else
11 for (erf , e

r
p) ∈ Nr

F ×Nr
P , dru(⟨erf , e

r
p⟩) > optPair.dr do

12 if mindist(erf , e
r
p) > erf .rid then

13 dr = dru(⟨erf , e
r
p⟩);

14 else
15 dr = PointQuery(erf , e

r
p, R

s
C );

16 if dr > optPair.dr then
17 optPair ← ⟨erf , e

r
p, dr⟩;

We only need to visit the child nodes of the entry pairs whose dru values are larger than
the optimal dr value found so far, optPair.dr. When the traversal reaches the leaf nodes,
we issue range queries on Rs

C for the unpruned facility-location pairs to compute the actual
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dr values, and update optPair.dr. We perform the traversal in a depth-first order so that
optPair.dr can be early updated and thus enhance the pruning capability of the algorithm,
as summarized in Algorithm 5.

The only problem left is how to efficiently initialize the R-tree variants, Rr
F Rr

P and
Rs

C . The R-tree variants are first built with the extra distance metric fields left uninitialized.
This is a standard R-tree construction process. Then the extra distance metric fields are
initialized as follows. First, an R-tree join like operation is performed on Rr

F and Rs
C to

precompute dnn and d2nn for the clients, as well as dr(f) and RID for the facilities all
together. The distance metric fields in the non-leaf nodes are initialized during the same
process in a bottom up fashion using the technique proposed for the efficient computation of
MND. The MND algorithm is then applied to precompute dr(p) for the potential locations
in Rr

P and initialize the distance metric fields in the non-leaf nodes in Rr
P , also in a bottom

up fashion. The extra cost of the precomputation is very limited as shown in the experiments
that verify the efficiency of the MND algorithm (≤ 1 second for 1,000,000 data points, cf.
Section 6.2). Once the R-tree variants are set up, they can be maintained incrementally with
data updates.

5 Cost Analysis
In this section, we analytically compare for all described methods (SS, QVC, NFC, MND,
SS-FR, MSND and RID) the precomputation cost, I/O cost, and CPU cost. Table 3 summa-
rizes the results, but omits CPU cost as it is just the product of I/O cost and processing cost
per node (block).

We first introduce the notation and equations used in the analysis. Let Cm be the maxi-
mum number of entries in a disk block (i.e., Cm = block size / size of a data entry). Let Ce

be the effective capacity of an R-tree, i.e., the average number of entries in an R-tree node.
The average height of an R-tree is h =

⌈
logCe

n
⌉

where n is the cardinality of the dataset;
the cardinalities of C, F and P are denoted by nc, nf and np, respectively. The expected
number of nodes in an R-tree is the total number of nodes in all tree levels (leaf nodes being
level 1 and the root node being level h), which is

∑h
i=1

n
Ci

e
= n

(
1
Ce

+ 1
C2

e
+ · · ·+ 1

Ch
e

)
=

n
Ce−1 (1−

1
Ch

e
) ≈ n

Ce−1 . We assume an R-tree node has the size of a disk block.

Table 3 Summary of Costs

Method Precomp Indexes I/O Cost

SS dnn N/A npnc

C2
m

QVC dnn RC , RF
np

Cm
+ k

npnf

Ce−1
+

np(1− wq)
logCe

nc

Cm

NFC dnn RC , Rn
C , RP (1− wn)

ncnp

(Ce−1)2

MND dnn Rm
C , RP (1− wm)

ncnp

(Ce−1)2

SS-FR dnn, d2nn N/A
nfnpnc

C3
m

MSND dnn, d2nn Rs
C (1− ws)

nfnpnc

C2
m(Ce−1)

RID dnn, d2nn Rs
C , Rr

F , Rr
P (1− wr)

nfnpnc

(Ce−1)3

dr, RID
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5.1 Precomputation and Index Cost

We precompute dnn(c, F ) for all location selection methods. Computing dnn(c, F ) for
all clients has the cost of O(ncnf ) since dist(c, f) for each pair of client c and existing
facility f needs to be computed. The result of dnn(c, F ) may be incrementally maintained
and therefore the cost is amortized. We precompute dnn(c, F ) and d2nn(c, F ) for the
facility replacement methods SS-FR and MSND. Since it is done at the same time, the cost
is very similar to that of precomputing dnn(c, F ) only. The RID method precomputes more
distance metrics (i.e., dr(f), dr(p) and RID), but uses a different computation algorithm,
which on average have much lower cost than the nested loop based dnn (d2nn) computation
used by the other methods. Meanwhile, these values are incrementally maintained. Thus, the
cost is amortized.

QVC uses RC and RF . NFC and MND all use RP . In addition, NFC uses RC and
the RNN-tree Rn

C , while MND uses the R-tree variant Rm
C . MSND and RID both use an

R-tree variant Rs
C , while RID also indexes F and P with two R-tree variants Rr

F and Rr
P ,

respectively. The cost of maintaining any of the R-tree variants is very similar to the cost of
maintaining a traditional R-tree. For example, Rn

C has the same Cm and Ce as RC , so it
has almost the same maintenance cost as RC . Rm

C has an additional attribute in each entry,
which reduce Ce a little bit. However, the effect on the height of the tree is very small. For
example, in our experiments, where every entry of RC stores only its MBR and a child node
pointer, the height of Rm

C is less than 10% larger than that of RC . The difference in height
will be even smaller in practical databases where an entry is much larger than just an MBR.
Therefore, we do not distinguish Cm (Ce) of different R-tree variants.

In summary, for the location selection query, except for the costs of building indexes,
all methods have the same precomputation cost. QVC and MND have similar R-tree main-
tenance costs and the NFC method maintains one more R-tree. For the facility replacement
query, MSND maintains an R-tree variant while RID maintains three. SS-FR and MSND
have the same distance metric precomputation costs. RID computes more distance metrics,
but the computation is more efficient due to the use of the R-tree variants.

5.2 I/O Cost

For SS, the data points are retrieved in blocks from the disk; the I/O costs is IOs =
np

Cm

nc

Cm
=

npnc

C2
m

. For the other location selection methods, they involve R-tree (and variant)
traversals. In NFC and MND, RP is traversed in a depth-first order and for every node NP

of RP , we need to retrieve the nodes in the client R-tree (Rn
C or Rm

C ) that satisfy certain
conditions with NP . In the worst case, all nodes are paired up and traversed. Therefore,
the worst-case I/O costs for these two methods are the same: nc

Ce−1
np

Ce−1 =
ncnp

(Ce−1)2 . In
average case, some of the nodes are pruned from traversal. We quantify the percentage of
pruned nodes as the pruning power, denoted by w; the number of nodes accessed is then
(1 − w)

ncnp

(Ce−1)2 , where w should be replaced by wn and wm for NFC and MND, respec-
tively. The cost difference among the two methods lies in the different pruning powers of the
two algorithms, which is associated with the metrics used in the determination of the influ-
ence sets, i.e., dnn(c, F ) and MND, respectively. Since MND is defined to approximate
dnn(c, F ) closely, the pruning power quantifiers have similar values, i.e., wm ≈ wn and
hence IOm ≈ IOn. This relationship is also observed in our experiments.

QVC involves the following I/O costs. (i) Fetch P from the disk in blocks, IOq1 =
np

Cm
.

(ii) For each potential location p, perform a best-first NN query to construct QV C(p): the
I/O cost is IOq2 = np · k nf

Ce−1 where k indicates the average percentage of RF nodes
accessed in the NN query. (iii) For every QV C(p), perform a window query on RC : the
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I/O cost is IOq3 =
np

Cm
· (1 − wq) logCe

nc. Therefore, the I/O cost of QVC is IOq =

IOq1 + IOq2 + IOq3 =
np

Cm
+ k

npnf

Ce−1 +
np

Cm
(1− wq) logCe

nc.
The I/O cost of SS is much larger than that of NFC or MND due to its lack of pruning

capability. The I/O cost of QVC depends on Cm and can be larger than SS under certain
circumstances as follows. Let IOnn = k

nf

Ce−1 (i.e., the I/O cost of the NN query discussed
above). Based on the I/O costs of SS and QVC, if C2

mIOnn > nc, we obtain CmIOnn >
nc

Cm
. Hence, np

Cm

(
1 + Cmk

nf

Ce−1 + (1− wq) logCe
nc

)
>

npnc

C2
m

and thus, IOq > IOs.
For example, in our experiments, when nc = 10K and Cm = 204, IOq > IOs whenever
IOnn > 2.4. This is a situation where NN query only accesses 2.4 nodes in RF . In general,
IOs > IOq when nc is huge or nf is small.

For the facility replacement methods, SS-FR retrieves all data points in blocks and its I/O
cost IOsf =

nf

Cm

np

Cm

nc

Cm
=

nfnpnc

C3
m

. MSND examines every pair of facility and potential
location. Thus, its I/O cost IOms = nf

Cm

np

Cm
IOq

ms =
nfnp

C2
m

IOq
sf , where IOq

ms denotes the
I/O cost of the range query required for dr computation. For the range query, we need to
retrieve the nodes in the client R-tree Rs

C that satisfy certain conditions with the bounding
rectangles of a facility block and a potential location block. In the worst case, every node
of Rs

C is traversed. The I/O cost is nfnp

C2
m

nc

Ce−1 =
nfnpnc

C2
m(Ce−1) . This worst-case I/O cost is

slightly worse than the I/O cost of SS-FR. Meanwhile, some of the nodes may be pruned
during the range query. We quantify the percentage of the pruned nodes as the pruning
power, denoted by ws. The number of nodes accessed is then (1 − ws)

nc

Ce−1 , and the I/O
cost becomes (1 − ws)

nfnpnc

C2
m(Ce−1) . This I/O cost can be very close to the worst-case I/O

cost because the bounding rectangles are usually large, since they bound randomly grouped
facilities and potential locations.

RID method further reduces the number of facility and potential locations accessed by
performing a branch and bound based traversal on Rr

F and Rr
P . Its I/O cost IOr is denoted

as (1−wr)
nf

Ce−1
np

Ce−1
nc

Ce−1 = (1−wr)
nfnpnc

(Ce−1)3 , where wr quantifies the pruning power of
the branch and bound traversal as well as the range query on Rs

C . Note that even though the
range queries of the RID method are on facility-location pairs instead of block pairs, which
means there may be more I/Os for the range query part, the advantage of RID over MSND is
still explicit because of the high pruning capability of the branch and bound traversal. Thus,
we have IOr < IOms ≈ IOsf .

5.3 CPU Cost

The CPU cost can be considered as the product of the CPU cost per block (node) multiplied
by the number of blocks (nodes) accessed. The I/O cost analysis provides the number of
nodes accessed. The CPU cost per block, denoted by t, involves MBR intersection check
and/or metric computation.

The NFC method requires the intersection examination of the MBRs, and MND requires
only the computation of minDist and the comparison of minDist and MND. Therefore
tm ≈ tn. For QVC, recall that IOq = IOq1+IOq2+IOq3. The first part only involves disk
block retrieval. There is very little CPU cost; The CPU cost of QVC is mainly tq2IOq2 +
tq3IOq3 where tq2 corresponds to the CPU cost per pair of RC and RF nodes during the
construction of QV C(p) and tq3 indicates the CPU cost per pair of QV C(p) block and
RC node. The third part, tq3IOq3, is comparable with the CPU costs of NFC and MND.
In fact tq3 ≈ tn because both methods perform a window query with the query window
being either the MBR of QV C(p) or NP .mbr, respectively. Due to the additional QVC
construction stage, QVC has higher CPU cost in general compared with NFC and MND.
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While the other methods only compute the values of several metrics for each pair of
accessed nodes, SS computes dist(c, p) for every pair of client c and potential location p
for each pair of blocks of the client set and the potential location set. Hence, the CPU cost
per pair of blocks of SS, ts, is much higher than that of any other method. Also, IOs is
not smaller than other I/O costs. Thus, SS has the highest CPU cost. The same conclusion
applies to the SS-FR and the MSND methods, while MSND method has comparatively
smaller CPU cost per pair of facility and potential location because the range query used
help prune many clients from distance comparison for dr computation. Therefore, MSND
has smaller overall CPU cost (i.e., CPUms < CPUsf ).

For RID, the distance metrics computed include (i) minDist, for determining which
equation to use for dr upper bound computation and further which pair of nodes to be
accessed next; (ii) dist(c, f) and dist(c, p), for actual dr value computation. The first part
is similar to the computations in the MND method, which is small because it is for per pair
of blocks. The second part is similar to the range query of the MSND method. Meanwhile,
IOr is much smaller. Therefore, the CPU cost of RID (CPUr) is small compared to the
other facility replacement methods.

In summary, we have CPUs > CPUq > CPUm ≈ CPUn and CPUsf > CPUms >
CPUr . These inequalities will be validated by experiments in the next section.

6 Experimental Results

This section reports our experimental results. We start with the experimental settings in Sec-
tion 6.1. Then we present experiments on the algorithms proposed for the location selection
and facility replacement queries in Sections 6.2 and 6.3, respectively.

6.1 Experimental Setup

All experiments were conducted on a desktop PC with 3GB RAM and 2.66GHz Intel R⃝

Core(TM)2 Quad CPU. The disk page size is 4K bytes. We measure the running time, the
number of I/Os and the index size.

We conduct experiments on synthetic and real datasets. Synthetic datasets are generated
with a space domain of 1000×1000. The dataset cardinalities range from 100 to 1,000,000.
Three types of datasets are used: (i) Uniform datasets, where data points are distributed
randomly; (ii) Gaussian datasets, where data points follow the Gaussian distribution; (iii)
Zipfian datasets, where data points follow the Zipfian distribution. The parameters of the
synthetic data experiments are summarized in Table 4, where values in bold denote default
values.

Table 4 Parameters and Their Settings

Parameter Setting

Data distribution Uniform, Gaussian, Zipfian
Client set size 10K, 50K, 100K, 500K, 1000K
Existing facility set size 0.1K, 0.5K, 1K, 5K, 10K
Potential location set size 1K, 5K, 10K, 50K, 100K
µ (Gaussian distribution) 0
σ2 (Gaussian distribution) 0.125, 0.25, 0,5, 1, 2
N (Zipfian distribution) 1000
α (Zipfian distribution) 0.1, 0.3, 0.6, 0.9, 1.2
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We use two groups of real datasets provided by Digital Chart of the World [20], which
contain the points of populated places and cultural landmarks in the US and in North Amer-
ica. We name them as the US group and the NA group, respectively. For each group of
datasets, the populated places are used as the client set C. The cultural landmark dataset is
divided into two datasets. Half of the cultural landmarks are chosen randomly to form the
existing facility set F , and the remaining are used as the potential location set P . For the US
group, the cardinalities of C, F , P are 15206, 3008 and 3009, respectively, while those for
the NA group are 24493, 4601 and 4602.

We use the R-tree [9] (or its variants as proposed in this paper) as the underlying access
methods.

We evaluate the performance of four methods for the min-dist location selection query:

– SS, where the potential locations and the clients are sequentially scanned for dr value
computation.

– QVC, where quasi-Voronoi cells are used to reduce the search space for dr value com-
putation.

– NFC, where nearest facility circles are used to reduce the search space for dr value com-
putation and the dr values of different potential locations are computed synchronously.

– MND, where MND regions are used to reduce the search space for dr value computation
and the dr values of different potential locations are computed synchronously.

We evaluate the performance of three methods for the min-dist facility replacement
query:

– SS-FR, where the facilities, the potential locations and the clients are sequentially scanned
for dr value computation.

– MSND, where MSND regions are used to reduce the search space for dr value compu-
tation.

– RID, where RID values are used to reduce the number of facility-potential location pairs
required to be checked to find the optimal pair and MSND regions are used to reduce
the search space for dr value computation.

6.2 The Min-dist Location Selection Query

In this subsection, we show that, for the min-dist location selection query, MND is the only
method that performs as good as NFC in terms of the running time and the number of I/Os,
while MND has a much smaller index size.

6.2.1 Varying Dataset Cardinality

The results for the experiments that vary the number of clients are shown in Fig. 11. From
this figure, we can see that the NFC method and the MND method perform best in terms
of the running time and the number of I/Os (cf. Fig. 11(a) and (b)). Meanwhile, the MND
method has a much smaller index size compared to the NFC method (cf. Fig. 11(c)). Fig. 11(d)
gives a different representation of the index size requirements using the measure relative to
the index size of the NFC method. For example, for the 10K datasets the index size of the
MND method is about 70% of that of the NFC method, and for the 100K datasets, the index
size of the MND method drops to about 60% of that of the NFC method.

From Fig. 11, we also observe that, compared with other methods, the SS and QVC
methods have significantly higher running time and larger numbers of I/Os, although the
QVC method requires slightly less index size than the MND method does and the SS method
does not require any index. When the cardinality of the client set is large enough (e.g. 500K),
the number of I/Os of SS exceeds that of QVC. The observations above are in accordance
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Fig. 11 The effect of client set size

with the cost analysis. QVC traverses RF for each potential location, while either NFC or
MND only traverses the R-trees once on average for the entire potential location set. Thus,
QVC has larger number of I/Os and higher running time. For SS, IOs > IOq whenever nc

is large. It is slow because it does not have any pruning strategy.
We have also conducted experiments that vary the number of facilities and potential

locations. The results are similar to the above and thus omitted. See reference [18] for more
details.

6.2.2 Varying Dataset Distribution

In the following experiments, we vary the distribution of the datasets. We focus on perfor-
mance of the algorithms in terms of the running time and the I/O cost rather than the index
size because the influence of detail data distribution on the index size requirement is not the
major concern of this paper.
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Fig. 12 The effect of σ2 in Gaussian distribution
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Fig. 12 shows the results of experiments on Gaussian datasets varying the value of σ2.
For the Gaussian datasets, varying σ2 means varying the degree of the inclination for the
data points to cluster at the central area of the distribution. Increasing σ2 leads to less dense
data points at the center. We see that, compared with varying dataset cardinalities, varying
σ2 does not affect much of the algorithm performance. NFC and MND are still the two most
efficient methods. These results follow our cost analysis.

Experimental results on datasets of Zipfian distribution have similar behavior to the
above results and are omitted.

6.2.3 Experiments on Real Datasets

The experimental results on real datasets are shown in Fig. 13. The comparative performance
of the methods is similar to that of experiments conducted for the synthetic datasets. QVC
shows the worst performance in terms of the number of I/Os. While the number of I/Os
of SS is close to that of QVC, it has the largest running time due to the lack of pruning
capability. NFC and MND outperform other methods in terms of both the number of I/Os
and the running time.

Overall, the MND method outperforms other methods.
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Fig. 13 Performance comparison on real datasets

6.3 The Min-dist Facility Replacement Query
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In this subsection, we compare the performance of the facility replacement methods,
i.e., SS-FR, MSND and RID. We show that RID constantly outperforms SS-FR and MSND
under various settings by up to five orders of magnitude.

6.3.1 Varying Dataset Cardinality

We first vary the size of the client dataset. As Fig. 14 shows, when the number of clients
increases, the running time and I/O for all methods increase. The advantage of RID is clear,
and the superiority is up to five orders of magnitude. It can process the query within 0.1
seconds for very large datasets (e.g., |C| = 1, 000, 000), while neither SS-FR nor MSND
can process the query within 100 seconds for much smaller datasets (e.g., |C| = 10, 000).
In particular, SS-FR requires 14, 676 seconds (≈ 4 hours) to process a dataset of 10, 000
clients. Since SS-FR scans every client, its running time increases linearly with the number
of clients. It will need 20 hours to produce a query answer for a dataset of 50, 000 clients.
Due to this extremely low efficiency, we omit SS-FR when |C| is larger than 10, 000 as well
as in the following experiments, and focus on the comparison between MSND and RID. We
also observe that the performance difference on I/O is relatively small compared with that
on running time. When |C| = 10, 000, MSND even has slightly higher I/O cost than SS-FR
does. This confirms our cost analysis in Section 5.

We also perform experiments where the facility set size and the potential location set
size are varied. From Fig. 15 we can see that RID outperforms MSND constantly in terms
of both running time and I/O when the facility set size is varied. An interesting observation
is that, while the costs of MSND increase with the dataset sizes because MSND accesses
every pair of facility and potential location, the costs of RID decrease. This is because when
the number of facilities increases, the dnn and d2nn values of the clients decrease and as a
result, the facilities have smaller RID regions, which enhances the pruning capability of the
method and hence the algorithm performance.

We omit the result of varying potential location set size because it is very similar to that
of varying client set size.
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Fig. 15 The effect of existing facility set size

6.3.2 Varying Dataset Distributions

Next, we vary the data distribution by varying the values of σ2 and α in the Gaussian and
Zipfian datasets, respectively. From Figs. 16 and 17 we can see that RID again outperforms
MSND in datasets with different distributions by several orders of magnitude. While data
distribution does not affect much of the performance of MSND, the performance of RID
varies when data distribution changes. This is explained as follows. Altering the values of
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σ2 and α effectively alters the skewness of the data distribution, which has a two-fold effect
on the algorithm performance. On one hand, more skewed data results in lower selectivity
of the range queries needed by MSND and RID. On the other hand, more skewed data
also means smaller dnn and d2nn values as well as RID regions, which results in higher
selectivity of the range queries. The combined effect depends on whether the former or
the latter is the dominating factor. As the figures show, the combined effect on the MSND
method is more balanced while it is varying on the RID method.
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Fig. 16 The effect of σ2 in Gaussian distribution
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Fig. 17 The effect of α in Zipfian distribution
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Fig. 18 Performance comparison on real datasets

6.3.3 Experiments on Real Datasets

We also evaluate the performance of MSND and RID on real datasets. The result in Fig. 18
again confirms the superiority of the RID method over the MSND method in terms of both
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running time and I/O. The comparative performance of the two method is similar to that of
the experiments on synthetic datasets.

7 Conclusions
We formulated the min-dist location selection problem and an important variant, the min-dist
facility replacement problem. For the location selection problem, we proposed two methods,
QVC and NFC, based on common approaches to location optimization problems. Our exper-
iments show that they significantly outperform the sequential scan algorithm. However, they
both have some drawbacks. NFC performs the best but requires maintaining an additional
index. QVC requires fewer indexes, but is not as efficient as NFC. We further proposed the
MND method, which has very close efficiency to NFC without the need of maintaining an
additional index. For the facility replacement problem, we first apply the MND method to
achieve an effective solution called the MSND method. To obtain even better efficiency,
we transform the facility replacement operation into a two-stage operation, and thus signif-
icantly reduce the search space, which results in a highly efficient method called RID. We
provided a detailed comparative cost analysis for all methods and performed extensive ex-
periments to evaluate the empirical performance of them. The results agree with our analysis
and validate the advantages of the MND method and the RID method.
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