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ABSTRACT

Self-supervised learning, especially contrastive learning, has made

an outstanding contribution to the development of many deep

learning research �elds. Recently, acoustic signal processing �eld

researchers noticed its success and leveraged contrastive learn-

ing for better music representation. Typically, existing approaches

maximize the similarity between two distorted audio segments

sampled from the same music. In other words, they ensure a seman-

tic agreement at the music level. However, those coarse-grained

methods neglect some inessential or noisy elements at the frame

level, which may be detrimental to the model to learn the e�ective

representation of music. Towards this end, this paper proposes

a novel Positive-nEgative frame mask for Music Representation

based on the contrastive learning framework, abbreviated as PEMR.

Concretely, PEMR incorporates a Positive-Negative Mask Genera-

tion module, which leverages transformer blocks to generate frame

masks on Log-Mel Spectrogram. We can generate self-augmented

positives and negatives upon the mask by masking important com-

ponents or inessential components, respectively. We devise a novel

contrastive learning objective to accommodate both self-augmented

positives/negatives and positives sampled from the same music. We

conduct experiments on four public datasets. The experimental

results of two music-related downstream tasks, music classi�cation

and cover song identi�cation, demonstrate the generalization and

transferability of PEMR for music representation learning.

CCS CONCEPTS

•Computingmethodologies→Unsupervised learning; Learn-

ing latent representations.
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1 INTRODUCTION

Supervised learning has hit a bottleneck. On the one hand, it relies

heavily on expensive manual tags and is subject to label errors and

false correlations. On the other hand, the amount of labeled data

is much smaller than unlabeled data. As a promising alternative,

self-supervised learning has drawn massive attention for its data

e�ciency and generalization ability. Recently, breakthroughs in con-

trastive learning, such as SimCLR [5], MoCo [16], BYOL [14], Deep

Cluster [3], SDCLR [19], shed light on the potential of contrastive

learning for learning self-supervised representation. Contrastive

learning has increasingly become dominant in self-supervised learn-

ing owing to its competitive experimental performance compared

with conventional supervised methods.

InMusic Information Retrieval (MIR) community, many research-

ers have made great e�orts to learn e�ective music representation

applied in di�erent music-related tasks, such as music classi�cation

[7, 8, 24, 27, 32, 34, 35], cover song identi�cation [18, 36–39], chord

recognition [6, 22]. However, most of them learn music represen-

tation in a supervised manner. Due to the labeled datasets upon

which the supervised learning methods depend being costly and

time-consuming, the performance of supervised learning methods

will be limited. For that reason, some audio research workers have

adopted contrastive learning methods to train neural networks. The

underlying idea of contrastive learning applied in music is to mini-

mize the distance among the audio segments from the same input

while minimizing the similarity among the audio segments from

the di�erent inputs. CLMR [30] uses a simple contrastive frame-

work for music representation whose encoder directly encodes raw

waveforms of songs. Although it performs well in classi�cation

https://doi.org/10.1145/3485447.3512011
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(a) Raw Waveform

(b) Log-Mel Spectrogram

Figure 1: (a) the raw waveform image of a music track, (b)

the corresponding Log-Mel Spectrogram.

downstream tasks, encoding raw waveforms can hardly encode

frequency distribution into the �nal representation of music. To

make the model understand the music in time and frequency do-

main more easily, unlike CLMR, COLA [29] encodes the Log-Mel

spectrogram of music so that the time-frequency information can

be embedded into music representation. BYOL-A [26], adopting the

network structure of BYOL, which owns an online network and a

target network, also opt the Log-Mel spectrogram of the music as

model input. More details about Log-Mel spectrogram can be �nd

in Section 3.2. Nevertheless, there exists an issue that they encode

all frames of the spectrogram into music representation space. That

would be harmful to the quality of learned music representation,

since not all frames impact the music positively. As shown in �gure

1(b), the onset of the track may be silent or directly missing, result-

ing in the absence of valid content of these starting frames. The

quality of music downloaded from web is uneven. A song may lose

its content at the beginning or any other position, while other songs

may contain noisy frames. These frames are unimportant parts for

the whole music. On the other hand, we argue that each frame has

a di�erent status in characterizing music. For example, the drastic

parts of rock music are more appropriate than the mild parts when

representing the characteristic of a particular song. In other words,

the drastic parts are more representative to the rock music. There-

fore, when learning music representation, it is necessary for us to

restrict the non-critical parts of music while augmenting the role

of crucial parts.

In order to address the above challenge, we propose tomask some

frames within a piece of music with a Positive-nEgative framemask

for Music Representation. Speci�cally, a asymmetrical structure

module utilizes the parameters of multi-head attention layers from

the transformer encoder to produce the positive-negative mask.

The positive mask will erase the existence of inessential frames.

Thus, the remaining crucial frames will be encoded and projected

into the contrastive learning space to obtain the augmented positive

representation. In turn, we can get the counterfactual negative rep-

resentation by adopting the negative mask. Moreover, we design a

contrastive learning objective for positive-negative representation

pairs. These masks and loss function can make the model pay more

attention to the critical frames and reserve the music’s global se-

mantic information while reducing the non-critical frames’ adverse

e�ects.

We pre-train the model on several public musical datasets and

employ labeled data to train classi�ers based on self-supervised

representation learned by PEMR. The classi�ers achieve the state-

of-the-art performance inmusic classi�cation task. To evaluate

transferability and generalization capability, we �ne-tune the en-

coder pre-trained in a dataset on another dataset for classi�cation.

Besides, we apply the pre-trained encoder in cover song identi�-

cation task and �ne-tune it. We can obtain the more advanced per-

formance for cover song identi�cation, through incorporating our

pre-trained encoder into the current advanced supervised model.

In summary, the contribution of this work is threefold:

• We propose to mask some crucial or inessential elements of

music so that the inessential parts will be restricted and the

critical parts will be boosted when leaning music represen-

tation.

• We devise an asymmetrical mask generation module, gener-

ating the positive and negative masks for input music, and

a contrastive learning loss function. We incorporate them

into the contrastive learning framework for learning more

e�ective music representation.

• The extensive experimental results show that our learned

musical representation achieves state-of-the-art performance

on a downstream classi�cation task. Furthermore, our learned

representation improves the performance of cover song iden-

ti�cation, demonstrating its e�ectiveness and transferability.

2 RELATEDWORK

2.1 Contrastive Learning

To solve the problem of the ever-growing unlabeled data that cost

a lot of human resources and time, lots of self-supervised methods

[3, 4, 10, 11, 13, 20, 28] has been proposed in several areas, typi-

cally, Computer Vision, Natural language processing. Since [15]

whose approaches contrast positive pairs against negative pairs

to learn representation, contrastive learning has attracted a great

deal of attention from both academia and the industrial community.

Contrastive Predictive Coding [17] is an unsupervised objective

that learns predictable representations. CMC [31] is view-agnostic

and can scale to any number of views by maximizing mutual in-

formation between di�erent views of the same observation for

learning representation. MoCo [16] views the contrastive learning

as a dictionary look-up to build a dynamic queue including sam-

ples of the current mini-batch and the previous mini-batch and a

moving-averaged encoder. Another method SimCLR [5], is a sim-

ple framework for contrastive learning without a memory bank.

Recently, BYOL [14] proposed a new architecture for contrastive

learning, which consists of online and target networks. They train

the networks only with the various augmented views of an identical

image without using negative pairs. Most of the above methods

are constructed with twin networks. To avoid collapsed solution



and minimize the redundancy, [40] contrast samples from features

dimension.

Many researchers in the music community have attempted to

apply contrastive learning for learning music representation. [29]

designs a common contrastive model for learning general-purpose

audio representation. [30] also uses SimCLR [5] framework for

pre-training the model. [26] introduces BYOL [14] for audio and

achieves advanced results in various downstream tasks.

2.2 Masking Strategy in Music Representation

Masking strategy has played a signi�cant role in the NLP com-

munity. The success of BERT [10], which randomly masks some

tokens in the input sequence and learns to reconstruct the masked

tokens from the output of the transformer encoder, has shown

its superiority in learning contextual information among tokens

that has attracted the attention of researchers in the audio domain.

For example, MusicBERT [41] devised a bar-level masking strat-

egy as the pre-training mechanism to understand symbolic music.

Mockingjay [25] is designed to predict the masked frame through

jointly conditioning on both past and future contexts. [42] proposes

two pre-training objectives, including Contiguous Frames Mask-

ing (CFM) and Contiguous Channels Masking (CCM), designed to

adapt BERT-like masked reconstruction pre-training to continuous

acoustic frame domain.

3 PROPOSED METHOD

The overall architecture of our pre-training framework is shown in

Figure 2. Our networks consist of a predictingmodule which utilizes

a transformer encoder to learn contextual correlation among frames,

an asymmetrical positive-negative mask generating module, and a

contrastive learning module. After pretraining with music datasets,

we utilize the Encoder, as previous works do [5, 14, 16], to obtain

the general music representation for various downstream tasks,

such as music classi�cation, cover song identi�cation.

3.1 Sampling and Augmentation.

The function of this unit is to select two segments from the same

waveform randomly and apply some augmentation methods in

the selected segments. We use the same group of music augmen-

tations as in CLMR [30]. TThe group includes polarity inversion,

noise, gain, �lter, delay, pitch shift. Each augmentation is randomly

selected accordingly to its setting probability.

3.2 Log-Mel Spectrogram

The digital audio signal represents the voltage amplitude of a song

varies over time. According to the Fourier theorem, every signal

can be decomposed into a set of cosine and sine waves that add up

to the original signal, i.e., an audio signal is comprised of several

single-frequency sound waves. We use its Mel Spectrogram, gener-

ated by Short-Term Fourier Transformation (STFT) and Mel-scale

�lter banks to capture the time-domain and frequency-domain in-

formation of music raw waveform. The Mel-scale aims to mimic the

human ear perception function–the human ear’s sensitivity varies

to di�erent frequencies. In the deep learning domain, [9] trained

convolution networks to autonomously discover frequency decom-

positions from raw audio. For simplicity, we use STFT andMel-scale

�lters to obtain the Mel-spectrogram of music and convert it to a

logarithmic scale.

3.3 Transformer Encoder

Not all frames of a piece of music play an equivalent role in charac-

terizing songs. Randomly masking the frames of music is a straight-

forward method to avoid the adverse e�ect of the inconsequential

music frames. However, the critical frames of music may be masked,

resulting in the encoder learning the inaccurate representation of

the music. Simultaneously, the trivial frames will be retained and

encoded, which will deteriorate the learned representation to a cer-

tain extent. Therefore, it is indispensable to capture the semantic

correlation between the frames and approximately quantify the

importance of a single frame to the entire music. Speci�cally, we

use a random masking strategy in the input data before feeding

it to the transformer encoder. We then use a predicting layer to

recover the masked positions from the output of the transformer

encoder, obtaining a predicting loss so that the transformer encoder

can learn the correlation of each frame to the input music.

The Transformer encoder uses self-attention mechanisms pri-

marily and learned or sinusoidal position information. Each layer

consists of a self-attention sub-layer followed by a position-wise

fully connected feed-forward network sub-layer.

We view a frame as a token. In order to make the transformer

encoder more stable and accurate when modeling the correlation

among all tokens from a music fragment, we train it with a random

mask strategy [10, 25, 42]. we denote the frames set of a spectrogram

as F = (f1, f2, . . . , fĈ), where F ∈ RĈ×Ā . We append a learnable

[CLS] token embedding in front of all frames, denoted as X =

(c, x1, x2, . . . , xĈ), where X ∈ R(Ĉ+1)×Ā , so that we can aggregate

information of all frames into [CLS] after attention operation. Then,

we utilize a multi-head attention mechanism to calculate attention

scores between a query and a key and use it for a value, which

allows the model to focus on di�erent parts of the frames sequence.

Speci�cally, the formulation of multi-head attention is,

YĤ,ℎ = A�ention(QĤ,ℎ,KĤ,ℎ,VĤ,ℎ)

= So�max

(

QĤ,ℎK
Đ
Ĥ,ℎ√

Ā

)

VĤ,ℎ (1)

where QĤ,ℎ , KĤ,ℎ , VĤ,ℎ are the query, key and value respectively.

The n and the h are the index of layer and attention head respec-

tively. They are calculated by QĤ,ℎ = XW
č

Ĥ,ℎ
, KĤ,ℎ = XWć

Ĥ,ℎ
and

VĤ,ℎ = XWĒ
Ĥ,ℎ

. TheW
č

Ĥ,ℎ
,Wć

Ĥ,ℎ
andWĒ

Ĥ,ℎ
∈ RĀ×Ā , which are the

corresponding weight matrices. The attention score between QĤ,ℎ

and KĤ,ℎ is divided by
√
Ā to avoid large values of the dot product.

Because the self-attention can not aware of the order, we add a

sinusoidal position embedding to the frames sequence before input

to self-attention.

The multi-head attention aggregates contextual information

through learnable weights, but it is still a linear model. For in-

troducing the non-linearity, multi-head attention output will be

fed to the position-wise feed-forward network (FFN) with two lay-

ers. Speci�cally, within the nth layer of transformer encoder, we

concatenate the outputs of all attention heads and apply linear

transformation to get YĤ , and input it into FFN to obtain output
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Figure 2: The overall framework of our proposed method for music representation learning. The predicting module is to

capture the correlation among frames.

XĤ ,

YĤ = Concat(YĤ,1,YĤ,2, . . . ,YĤ,ℎ, . . . ,YĤ,Ą )WĤ (2)

XĤ = ReLu(YĤWĤ,1 + bĤ,1)WĤ,2 + bĤ,2 (3)

whereWĤ ∈ RĄĀ×Ā ,WĤ,1 andWĤ,2 ∈ RĀ×Ā , bĤ,1 and bĤ,2 ∈ RĀ .
The H is the number of attention heads. For other details about

transformer, such as positional encoding and residual connections,

you can �nd from [33]. We then randomly mask the frames and

use FFN to predict the missing content so that we can learn robust

contextual information between frames. The protocol of random

masking follows [10].

3.4 Generating Positive-Negative Frame Mask

We argue that the crucial frames of a raw waveform can facilitate

us learning a more distinct music representation that the network

can identify di�erent music more easily and accurately. As we

describe above that the noisy parts or inessential parts will be

detrimental to the music representation. Reducing the e�ect of non-

critical frames is necessary. Hence, we generate the positive and

negative masks to create the augmented positive and counterfactual

negative representations. The agreement between positives, the

distance between positives and negatives will be optimized by the

contrastive learning loss functions. You can see more details in

Section 3.6.

We design an asymmetrical module to obtain the positive-negative

mask. Firstly, we randomly select two fragments from the same

music raw waveform. After applying several augmentation ap-

proaches in them, we get their Log-Mel spectrogram produced by

stacking a lot of frames. Before inputting them into the transforma-

tion encoder, we add a [CLS] token vector in front of their frames

sequences. As we illustrate above, the vector c will contain the

information of all frames within a sequence after being encoded

by the transformation encoder. Therefore, we use the query vector

of c
′
and c

′′
to calculate attention scores between it and the keys

of frames F
′′
. The attention scores will be used to select a certain

percentage of frames to be masked. Speci�cally, within the last

layer of transformer encoder, we take out the CLS
′č
ℎ

and CLS
′′č
ℎ

of

added tokens in both branches. Then, we utilize these queries to

calculate the attention scores with F
′′ć
ℎ

,

s =
1

2

Ą
∑

ℎ=1

(So�max(CLS
′č
ℎ

·
F
′′ć
ℎ√
Ā

+ So�max(CLS
′′č
ℎ

·
F
′′ć
ℎ√
Ā
))

(4)

where F
′′ć
ℎ

is the keys in the hth attention head, CLS
′č
ℎ

and CLS
′′č
ℎ

∈ R1×Ā , F′′ć
ℎ

∈ RĀ×Ĉ , s ∈ R1×Ĉ . The frames with high values in

the ďęĥĨěĩ mean that they are crucial to both music fragments un-

der two augmentation views. According to the s, we can screen a

certain proportion of the frames with the lower attention weights.

The remained crucial frames will reserve the global and local in-

formation since the two fragments locate in di�erent positions of

the whole music raw waveform. Speci�cally, we rank the s in the

ascending order and set the value ranked at ratio Ĩ as the threshold

Ī . The Ĩ is the ratio value, and we set it to 10% as the default value.

We obtain the positive mask matrix M = (m1,m2, . . . ,mğ , . . . ,mĈ)



as follows,

mğ =

{

0, sğ < Ī

e, ĥĪℎěĨĩ
(5)

where e is unit vector, 0 is a zero vector. The negative mask M =

1 −M. We add the positive and negative mask to the input frames

F
′′
to obtain the augmented positive frames F

′′
Ħĥĩ and counterfac-

tual negative frames F
′′
Ĥěĝ respectively. The F

′′
Ħĥĩ and F

′′
Ĥěĝ will be

encoded and projected into the positive representation Z
′′
Ħĥĩ and

negative representation Z
′′
Ĥěĝ .

3.5 Encoder and Projection Head

As the familiar setting in contrastive learning [5, 14, 30], we apply

a neural network encoder Ĝ (·) to extract representation vectors

from augmented examples and use a MLP with one hidden as pro-

jection head ĝ(·) to map representations to the latent space where

contrastive loss is applied. We opt Fully Convolutional Networks

(FCN) [7] as our base encoder. The dimensionality of representation

vectors from encoder is Āě = 512, from projection head is ĀĦ = 256.

3.6 Pre-training Objective Function

For training the model, we adopt Huber loss [12], and Barlow Twins

loss [40] as our pre-training objective. In section 3.3, a predicting

layer is to predict the random disturbed input according to the

output of the transformer encoder. The output of the predicting

layer is denoted as P. The set I includes all masked frames’ index.

We calculate the predicting loss LĦĨěĚ as follows,

LĦĨěĚ =

∑

ğ∈I

Ā
∑

Ġ=0

smoothĈ1 (Xğ, Ġ − Pğ, Ġ ), (6)

where

smoothĈ1 (Į) =
{

0.5 · Į2, |Į | < 1

|Į | − 0.5, ĥĪℎěĨĭğĩě
(7)

L2 loss is more sensitive to outliers due to the square function. To

stabilize training, we follow [12] to use L1 loss when |x| is larger than

1. So the LĦĨěĚ is less sensitive to outliers. In section 3.5, we feed

a batch of F
′
, the augmented positive version and counterfactual

negative version of a batch of F
′′
into encoder and projection head

to respectively get Z
′
, Z

′′
Ħĥĩ , Z

′′
Ĥěĝ ∈ Rþ×ĀĦ , where B is the value

of batch size. The Z
′
and Z

′′
Ħĥĩ are treated as the positive samples

in the contrastive space while Z
′′
Ĥěĝ is the negative samples. We

compute the contrastive loss between Z
′
and Z

′′
Ħĥĩ , denoted as LĦĥĩ

in the following manner,

LĦĥĩ =
ĀĦ
∑

ğ=0

(1 − Uğ,ğ )2 + Č

ĀĦ
∑

ğ=0

ĀĦ
∑

Ġ≠ğ

U2

ğ, Ġ (8)

where U ∈ RĀĦ×ĀĦ is the cross-correlation matrix between Z
′
and

Z
′′
Ħĥĩ . LĦĥĩ is the same as BTLoss [40]. Meanwhile, we design a

contrastive loss for the negative samples,

LĤěĝ = Č

ĀĦ
∑

ğ=0

V2

ğ,ğ (9)

Table 1: The statistics of all datasets. Music Classi�cation

and Cover Song Identi�cation are denoted as MC and CSI,

respectively.

Dataset train validation test task

MagnaTagATune 18,706 1,825 5,329 MC

GTZAN 930 - - MC

SHS100K 9,999 - 1,004 CSI

Covers80 - - 160 CSI

where V ∈ RĀĦ×ĀĦ is the cross-correlation matrix between Z
′
and

Z
′′
Ĥěĝ . The Č is a hyperparameter to trade o� the importance ofLĤěĝ

and the second term of LĦĥĩ . The loss LĦĥĩ and LĤěĝ contrast data
samples along the feature dimension which can prevent trivial

constant solutions. Our �nal loss is L = LĦĨěĚ + LĦĥĩ + LĤěĝ .

4 EXPERIMENTAL EVALUATION

4.1 Experimental Setting

4.1.1 Dataset. Weexperimentwith several available public datasets

ofter used for classi�cation and cover song identi�cation. More de-

tails about datasets are illustrated as follows,

Music Classi�cation. MagnaTagATune (MTAT): The annota-

tions of MagnaTagATune were collected by Edith Law’s TagATune

game [23]. The dataset includes 25863 pieces of music which are

29-seconds-long, and each track has multiple tags. The clips span a

broad range of genres like Classical, New Age, Electronica, Rock,

Pop, World, Jazz, Blues, Metal, Punk, and more. We split it into

train/valid/test with a ratio as [30], and get 18706/1825/5329 tracks;

GTZAN1 : The dataset consists of approximately 1000 audio tracks,

each 30 seconds long. It contains ten genres.

Cover Song Identi�cation. A cover version is a new performance

or recording by a musician other than the original performer of

the song. Second Hand Songs 100K (SHS100K):We crawled raw

audios through youtube-dl2 using the provided URLs from Github3.

Due to the copyright, We crawled all songs from YouTube and got

9733 songs. Every song has many cover versions. All cover versions

of the 9733 songs add up to 104612. Following the experimental

setting of [38], we selected the songs whose number of cover song

versions were larger than 5 for training. We randomly selected

tracks from the remaining records to construct two subsets for

validation and testing, respectively. The ratio among training set,

validation set, and testing set is 8:1:1. We get 6000 songs with 84153

versions for training, 1941 songs with their 10456 cover songs for

testing; Covers804: There are 80 songs exists in Covers80, and

every song has 2 cover versions.

4.1.2 Metrics. To evaluate our learned representation for music,

we follow the commonly used linear evaluation setting [1, 5, 21, 30],

where a linear classi�er is trained on an encoder from which param-

eters are not updated. Moreover, we train a multi-layer perceptron

(MLP) to observe if the performance can be better after adding

1http://marsyas.info/downloads/datasets.html
2https://github.com/ytdl-org/youtube-dl
3https://github.com/NovaFrost/SHS100K2
4https://labrosa.ee.columbia.edu/projects/coversongs/covers80/



Table 2: The performance of some advanced supervised and

self-supervised methods in music classi�cation tasks is all

trained on the MagnaTagATune dataset. For the unsuper-

vised models, the scores are obtained by linear classi�ers. *

represents the performance of an MLP classi�er.

Method Param ROC-AUC PR-AUC

Supervised

1D-CNN 382K 85.6 29.6

SampleCNN 2394K 88.6 34.4

Musicnn 228K 89.1 34.9

Timber CNN 220K 89.3 -

FCN-4 370K 89.4 -

Self-Supervised

MoCo 370K 87.0 32.1

MoCo v2 370K 87.9 33.2

CLMR 2394K 88.5 35.4

SimCLR 370K 88.7 34.8

BYOL 370K 89.1 35.8

PEMR(ours) 370K 89.6 36.9

Self-Supervised

CLMR* 2394K 89.3 35.9

MoCo* 370K 89.5 36.3

MoCo v2* 370K 89.8 36.6

SimCLR* 370K 89.8 36.9

BYOL* 370K 89.9 37.0

PEMR(ours)* 370K 90.3 38.0

the depth of the classi�er. We choose ROC-AUC and PR-AUC to

measure the e�ect of the classi�er comprehensively. For the cover

song identi�cation task, we use the widely used evaluation metrics
5 mean average precision (MAP), the mean rank of the �rst cor-

rectly identi�ed cover (MR1), and precision at 10 (Precision@10).

Precision@10 is the mean ratio of the identical versions recognized

successfully in the top 10 ranking list, which is obtained through

ranking all records by the similarity between query and references.

We calculate scalar products between two music representations to

judge their similarity.

4.1.3 Implementation Details. The basic encoders, a full convolu-

tion network with 4 layers, share parameters between two branches.

The encoder outputs a 512-dimension feature as a representation.

An MLP as projection head is used to map the representations to a

smaller space. The output dimension of the projection head is 256.

It is worth mentioning that the encoders and projection heads of

all the unsupervised methods used in the experiments are consis-

tent. We use the Adam optimizer. The learning rate is 0.0003, and

weight decay is 1.0 ×10−6. Others are default. We set the batch size

to 64 and train for 300 epochs, taking about 30 hours on a GPU.

At the spectrogram extracting stage, the hop size is 128 during

time-frequency transformation. STFT is performed using 256-point

FFT while the number of mel-bands is set as 128. The transformer

encoder consists of 3 layers, and its multi-head attention sub-layer

has 3 heads.

5https://www.musicir.org/mirex/wiki/2020:Audio_Cover_Song_Identi�cation

4.2 Music Classi�cation

We select some traditional and advanced supervised baselines in

music classi�cation and select some state-of-the-art self-supervised

baselines in music representation. To make the results more persua-

sive, we implement several advanced contrastive learning models

for music representation.

4.2.1 Linear Evaluation. Table 2 shows the performance compari-

son in music classi�cation tasks between other approaches, includ-

ing supervised methods and self-supervised methods, and PEMR.

We follow [5, 16] to calculate the number of parameters of encoders

in self-supervised methods. We use thop package6 to obtain the

model size. Following a standard linear evaluation setting [5, 14, 16],

We use the training set of MTAT to pre-train the unsupervised

learning models and train linear classi�ers based on the frozen

pre-trained encoder for evaluating on the test dataset of MTAT.

The applied encoders are the same for all methods except CLMR.

CLMR uses sampleCNN [24] to adapt raw waveform. To ensure

a faithful comparison, the metric values of baselines are directly

copied from their papers, where Timber CNN and FCN-4 do not

report PR-AUC values. Our method achieves the best performance

under linear evaluation protocol. We attribute the empirical re-

sults to the positive-negative frame mask, making the networks

preserve the context while concentrating on the critical parts of

music. The comparison between CLMR and other self-supervised

methods demonstrates the advantage of Log-Mel spectrogram. In

addition, we train the MLP to observe whether the performance can

be improved when introducing more parameters. The experimental

results of PEMR reach the best of 90.3% in ROC-AUC, 37.8% in

PR-AUC.

4.2.2 Semi-Supervised Learning. Getting tagged data for deep learn-

ing problems often requires skilled human agents. As a result, the

costs associated with the labeling process can make a large number

of fully labeled training sets infeasible, while obtaining unlabeled

data is relatively inexpensive. In such situations, semi-supervised

learning can be of great practical value. Aiming at estimating if

our learned music representation can still perform well in the semi-

supervised learning classi�cation task, we decrease the percentage

of the labeled training data during the �ne-tuning stage. Speci�-

cally, we randomly sample 1%, 10% labeled data fromMTAT training

dataset just as [2, 5] do. We directly feed these few labeled data

to the pre-trained base encoders and linear classi�ers for training.

The evaluation results of the previous approaches and PEMR are

shown in Table 4. In contrast with other musical self-supervised

methods, PEMR can generate more generalizable music representa-

tion even if the amount of labeled music for learning is inadequate.

Besides, we randomly initialize the base encoder FCN carrying a

linear classi�er and train it with the same sampled labeled data.

Our performance substantially exceeds the model trained from a

scratch. The empirical results prove the signi�cance of our pre-

trained music representation at a labeled-data-lacked scenario.

4.2.3 Transfer Learning. Speci�cally, we adopt the whole GTZAN

dataset for pre-training the model and employ the MTAT training

dataset to train classi�ers which will evaluate on the MTAT testing

6https://pypi.org/project/thop/



Table 3: We pre-train the models in the GTZAN dataset

and transfer their learned parameters to another dataset for

training. We evaluate the transfer capacity in both linear

evaluation and �ne-tuning settings.

Method
Linear Evaluation Fine-tuned

ROC-AUC PR-AUC ROC-AUC PR-AUC

FCN - - 89.8 36.8

MoCo 74.8 18.9 89.6 36.6

MoCo v2 78.4 21.3 89.8 36.8

CLMR 81.9 26.2 89.7 36.1

BYOL-A 86.7 32.0 89.3 36.0

COLA 86.8 32.1 89.6 36.6

PEMR(ours) 87.9 33.8 90.0 37.3

Table 4: We �ne-tune the pre-trained encoders and linear

classi�ers with di�erent quantities of labeled data.

Method

Label Fraction

1% 10%

ROC-AUC PR-AUC ROC-AUC PR-AUC

FCN 73.2 19.7 86.3 30.8

MoCo 74.3 18.6 87.4 33.1

MoCo v2 75.3 20.1 87.2 32.4

CLMR 77.3 22.6 87.0 32.9

COLA 73.1 18.6 87.2 32.5

BYOL-A 76.2 22.4 87.6 33.4

PEMR(ours) 77.3 24.4 88.0 34.0

Table 5: We experiment with a baseline contrastive frame-

work without the mask. Then, we apply the positive mask

and the negative mask in order.

Method ROC-AUC PR-AUC

w.o. mask 89.1 36.2

pos. mask 89.4 36.6

pos.+ neg. mask (PEMR) 89.6 36.9

dataset. To reveal the superiority of PEMR more apparently, we

compare several self-supervised methods for music representation,

including previous approaches and ours. As shown in Figure 3, the

e�ect of the classi�ers based on the encoder pre-trained by PEMR is

the most advanced under both linear evaluation and �ne-tuning set-

tings. More importantly, we can surpass the same network trained

in the supervised learning paradigm in the �ne-tuning situation.

Furthermore, although we freeze the pre-trained encoder when

training the classi�er, we can also obtain competitive results of

87.9% in ROC-AUC and 33.8% in PR-AUC. The results are compara-

ble to the supervised FCN trained from scratch.

Figure 3: The variation of the performance with di�erent

masked ratios.

4.3 Ablation Study

This section will analyze the impact of the augmented positive

representation and the counterfactual negative representation gen-

erated from the positive-negative mask on learning high-quality

music representation. Besides, we modify the vital parameter ratio

when creating the positive-negative mask to control the proportion

of the masked frames in input data. Speci�cally, the ratio ∈ [0.01,

0.1, 0.3, 0.5], we change its value and pre-train the network from

scratch for 300 epochs. The experimental results are shown in Table

5 and plotted in Figure 3. We �nd that,

• We pre-train the baseline model without any masking strat-

egy. Based on the baseline, we only add a positive mask into

the model. Their experimental results are shown in Table 5.

Generating the augmented positive frames and the counter-

factual negative frames is bene�cial for the model to learn

e�ective music representation.

• In Figure 3, the model achieves the best result when ratio

is 0.1 while su�ering from performance drops if the value

of ratio continues growing. We ascribe this phenomenon to:

1) the mild e�ect of the mask. When ratio is too small, for

example, ratio equals to 0.01, which means little low-scores

frames selected to construct the negative frames sequence

F
′′
Ĥěĝ . Most of the noisy or inessential frames will be retained

in the positive frames sequence F
′′
Ħĥĩ , resulting the model

can not focus on the crucial elements. 2) the excessive e�ect

of the mask. The negative frames sequence will contain a

large number of the crucial frames if ratio is too big. That

will destroy the positive frames sequence, causing the model

to learn inaccurate music representation.

4.4 Cover Song identi�cation

The task of cover song identi�cation is to identify alternative ver-

sions of previous musical works. Since di�erent versions of a song

are performed by various artists or musicians and instruments, they

may vary signi�cantly in pitch, rhythm, structure, and even in fun-

damental aspects related to the harmony and melody of the song.



Table 6: Transfer learning for cover song identi�cation.

The music representation encoder used in this task is pre-

trained with the out-of-domain dataset.

Method MAP Precision@10 MR1

SHS100K-SUB

Ki-Net 0.112 0.156 68.33

TPP-Net 0.267 0.217 35.75

FCN 0.289 0.230 34.86

CQT-Net 0.446 0.323 18.09

Fine-tuned:

(rand. FCN) + CQT-Net 0.433 0.317 21.13

(pre. FCN) + CQT-Net 0.484 0.341 20.68

Covers80

Ki-Net 0.368 0.052 32.10

TPP-Net 0.5 0.068 17.08

FCN 0.529 0.073 12.50

CQT-Net 0.666 0.077 12.20

Fine-tuned:

(rand. FCN) + CQT-Net 0.624 0.079 14.43

(pre. FCN) + CQT-Net 0.668 0.081 10.52

Recently, cover song recognition has attracted attention because it

has the potential to serve as a benchmark for other musical similar-

ities and retrieval algorithms. Chord analysis, melodic extraction,

and musical similarity are all closely related to cover song identi�ca-

tion – another area of music analysis where arti�cial intelligence is

used. Before [36], Previous research mostly involved hand-crafted

features, which was intolerable when facing large-scale datasets.

Given this, [36] proposed deep learning methods, learning to ex-

tract features e�ciently for cover song identi�cation. [38], and [39]

devised TPP-Net and CQT-Net that could be naturally adapted to

deal with key transposition in cover songs and designed a training

scheme to make their model more robust. We select these advanced

models as our baselines of cover song identi�cation task. The main

goal of them is to learn the high-quality representation of songs,

employing supervised methods. There is still a remaining great

developing space for self-supervised learning applying in this task.

The pre-training for music representation will be greatly mean-

ingful if the pre-trained music representation can be transferred

to other downstream tasks where training datasets have little la-

beled data. After pre-training in the MTAT training dataset, we

obtain the encoder and �ne-tune it with the datasets from the cover

song identi�cation domain. The more details are as following: 1)

the network we want to train consists of FCN and CQT-Net. 2)

the SHS100K training set is provided for the network to �ne-tune.

3) we extract music representation through the trained network

and evaluate their performance on the SHS100K testing set and

Covers80 dataset. It is worth mentioning that a lot of songs can

not be downloaded from YouTube due to the invalid copy-

right, resulting in the much di�erence between our downloaded

SHS100K and SHS100K used in previous methods. So we randomly

sample the data from SHS100K to construct a subset of SHS100K,

namely SHS100K-SUB, and split it into train, validation, test set

with the same ratio as [38, 39]. Table 6 exhibits our experimental

results. We randomly initialize the parameters of FCN and CQT-Net.

After training in the SHS100K-SUB train set, the performance in

the SHS100K-SUB test set or Covers80 can not surpass CQT-Net.

Nevertheless, we can improve the model’s performance on two

datasets by incorporating the pre-trained FCN with CQT-Net.

Figure 4: Linear music classi�er trained on the top of our

pre-trained encoder pre-trained with di�erent epochs.

4.5 Training Epochs

Figure 4 shows the impact of di�erent numbers of training epochs.

When training time is relatively short, we �nd that the training

epoch is a critical key in�uencing the �nal performance. With more

training steps/epochs, the gaps between di�erent epochs decrease

or disappear.

5 CONCLUSION AND FUTUREWORK

In this paper, we propose to mask the critical and unimportant or

noisy regions of music under the contrastive learning framework

so that the model can concentrate on the crucial parts of the music,

thus learning the more remarkable and e�ective representation for

music. We devise an asymmetrical module to obtain the positive-

negative mask by utilizing the transformation encoder’s attention

weights. Our pre-trained representation is applied to two music-

related downstream tasks, music classi�cation, and cover song

identi�cation. The experimental results of two music-related tasks

demonstrate the positive-negative mask is bene�cial for the model

to learn more e�ective music representation, which has strong

generalization ability and transfer ability.

However, there are still many challenge existing in the Music In-

formation Retrieval (MIR) community. Applying pre-trained music

representation to music-related areas is a e�ective way to solve the

challenge. We look forward to more related work in the future.
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