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ABSTRACT

Reranking, as the �nal stage of multi-stage recommender systems,

re�nes the initial lists tomaximize the total utility.With the develop-

ment of multimedia and user interface design, the recommendation

page has evolved to a multi-list style. Separately employing tra-

ditional list-level reranking methods for di�erent lists overlooks

the inter-list interactions and the e�ect of di�erent page formats,

thus yielding suboptimal reranking performance. Moreover, simply

applying a shared network for all the lists fails to capture the dis-

tinctions in user behaviors on di�erent lists. To this end, we propose

to draw a bird’s-eye view of page-level reranking and design a

novel Page-level Attentional Reranking (PAR) model. We introduce

a hierarchical dual-side attention module to extract personalized

intra- and inter-list interactions. A spatial-scaled attention network

is devised to integrate the spatial relationship into pairwise item

interactions, which explicitly models the page format. The multi-

gated mixture-of-experts module is further applied to capture the

commonalities and di�erences of user behaviors between di�erent

lists. Extensive experiments on a public dataset and a proprietary

dataset show that PAR signi�cantly outperforms existing baseline

models.
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1 INTRODUCTION

In multi-stage recommender systems (MRS), reranking, as the �nal

stage, re-orders the input ranking lists from the previous ranking

stage [21]. The goal is to maximize the total utility of the reranked

lists. The quality of reranking has a direct impact on users’ experi-

ence and satisfaction, and thus plays a crucial role in MRS [26].

Various reranking methods [2, 3, 32, 33, 44] have been developed

in recent years, but they are mainly list-level reranking models. List-

level models rerank a single list each time, and only consider the

cross-item in�uence within the individual list [26]. Such a reranking

strategy, though already found useful in many industrial applica-

tions, may still be suboptimal. In fact, with the development of

multimedia and user interface design, the �nal recommendation

page presented to the user is usually in amulti-list style [14, 15]. As

shown in Figure 1, each list on the multi-list page often highlights a

particular theme (e.g., “Trending”, “Games”), sometimes even with

a tailored layout (e.g., size, location). The existence of other lists

changes the user behavior patterns, leading to a di�erent utility

distribution. In this work, we propose to draw a bird’s-eye view

over the whole reranking page and develop a page-level reranking

algorithm. While intuitively useful to integrate page-wise informa-

tion, it is nontrivial to jointly perform reranking for multiple lists

with the following three major challenges (C1 - C3).

(C1) Firstly, incorporating intra-list and inter-list interactions is

essential for page-level reranking. Items from the same list are usu-

ally related to the same theme. Modeling the cross-item in�uence

within the list (i.e., intra-list interaction) and identifying the best

permutation over candidate items is the main objective for rerank-

ing [26]. Moreover, we observe that the inter-list interaction is also

crucial for page-level modeling — whether a user is interested in an

item is also in�uenced by items placed in other lists. Independent
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Figure 1: Illustration of di�erent page formats. Left: single

vertical list in Amazon Shopping. Medium: multiple horizon-

tal lists in Net�ix. Right: multi-list page with interleavings

of vertical and horizontal lists in Apple App Store.

optimization for each individual list fails to consider the context in

other lists. For example, in Figure 1b, the TV series Stranger Things

Season 3 should have a low utility in the “Recommended For You”

list (rank 2), supposing the user had already �nished the series years

ago. However, its sequel Stranger Things Season 4 in the “Trending”

list (rank 1) can motivate the user to re-watch the Season 3 for a

second time to recall the previous story, leading to a di�erent utility

distribution. Thus, both intra- and inter-list interactions should be

considered to provide a holistic view.

(C2) Secondly, the page format of the reranking page a�ects

how items interact with each other, and thus should also be in-

troduced to the page-level reranking. For instance, in Figure 1b,

lists of movies and TV shows are horizontally stacked from top

to bottom. In Figure 1c, the page contains interleavings of vertical

and horizontal lists and forms an “F” shape. Compared with the

page of stacked horizontal lists, the horizontal lists in the F-shape

page are separated by a vertical list with a larger distance, so that

the in�uence between items from two consecutive horizontal lists

may be less. The in�uence becomes even less if the length or size

of the inserted vertical list is increased, which further enlarges

the distance between lists. We also provide evidence for such an

e�ect in Section 2. Therefore, page-level reranking is expected to

formulate the page format (e.g., the size and location of the items).

(C3)Thirdly, user behaviors on di�erent lists have commonalities

and distinctions. For one thing, user behaviors across lists may

share some basic patterns (e.g., position bias, cascade hypothesis [7,

17]) and underlying personal preferences. Collaboratively putting

multiple lists together bene�ts the understanding of the underlying

common behaviors of each user. For another, due to the theme

and format of each list, user behaviors also possess distinctions for

di�erent lists. For example, in Figure 1c, the position bias could

be more severe for horizontal lists than that for vertical ones. The

horizontal lists are designed as carousel sliders, which reduces the

impression opportunity for lower-ranked items. Simply using the

same network for all the lists may be inferior as the list-speci�c

information is not well captured.

Although Hao et al. [19] consider the page-level information

and propose the DHANR model, they only transform the items on

the page to a static page representation by a hierarchical attention

network. The obtained page representation is fed into the list-level

reranking model as the static side information for each individual

list, unaware of the dynamic inter-list interactions between items

or the page format of the whole page. Moreover, DHANR fails to

capture the commonalities and distinctions among lists.

To address the above issues, we propose a novel model named

Page-level Attentional Reranking (PAR) for page-level reranking.

Multiple lists are jointly reranked with a uni�ed model to capture

the multifaceted �ne-grained mutual in�uences among lists. Firstly,

we propose hierarchical dual-side attention (HDS-Attn) module

to extract the intra- and inter-list interactions according to users’

individual behavior history (C1). Next, the spatial-scaled attention

(SS-Attn) network is designed to encapsulate the pairwise in�u-

ence between items with respect to their spatial relationship. The

attention is numerically scaled by the distance between items on

the page, which provides explicit modelings over the page format

(C2). Lastly, after obtaining the interacted feature representation

from HDS-Attn and SS-Attn, PAR adopts the Multi-gated Mixture-

of-Experts (MMoE [30]) module to capture the commonalities and

di�erences of user behavior patterns among di�erent lists (C3).

MMoE maintains a set of parallel expert networks to capture var-

ious aspects of behavior patterns and applies an attentional gate

with list-speci�c parameters to aggregate the expert outputs for the

�nal score estimation. The main contributions of this paper are:

• We propose to draw a bird’s-eye view over the whole reranking

page to jointly rerank multiple lists and optimize the overall

utility by considering the page-wise information. To the best of

our knowledge, this is the �rst work to consider the e�ect of

general page format for page-level reranking.

• We conduct data analysis based on amulti-list dataset and identify

the importance of intra- and inter-list interactions and the spatial

relationship (i.e., re�ection of page format) between items.

• We propose a novel Page-level Attentional Reranking (PAR)

model. We design an HDS-Attn module for the personalized

intra- and inter-list interactions, and an SS-Attn module to in-

corporate the page format. The MMOE module is employed to

capture the commonalities and distinctions for di�erent lists.

• Extensive experiments on a public dataset and a proprietary

dataset show that PAR achieves the state-of-the-art performance

compared with existing baseline models.

2 DATA ANALYSIS

One of the challenges for page-level reranking is to model the intra-

and inter-list interactions between items on a page. Therefore, we

present a brief data-driven study on an F-shape page (i.e., Figure 2a)

to investigate how items at di�erent positions in�uence each other.

The data is collected from a mainstream App Store, where the page

adopts an interleaved arrangement of vertical and horizontal lists.

The detailed data description can be found in Section 4.1.1.

To study how the other items placed on the same page in�uence

the utility of a given item, we select 6 �xed positions on the F-shape

page, as illustrated in Figure 2a. For the �xed position Č1:

• Č2 is adjacent to Č1 in the same list;

• Č3 is distant from Č1 in the same list;

• Č4 is adjacent to Č1 in another neighboring list;

• Č5 is distant from Č1 in another neighboring list;

• Č6 is distant from Č1 in a remote list.

They form �ve typical positional relationships on a multi-list

page. For each pair of positions (i.e., Č1 versus Čğ , ğ = 2, 3, 4, 5, 6), we

compute the click-through rate (CTR) of Č1 with di�erent categories

when the item category at Čğ varies. We plot the heatmap for the
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Figure 2: (a) The �ve �xed positions on the F-shape page. The red auxiliary lines and dots are provided for the illustration of

the Manhattan distance measurement between items. (b) CTR of Č1 as Č2 varies. (c) CTR of Č1 as Č3 varies. (d) CTR of Č1 as Č4
varies. (e) CTR of Č1 as Č5 varies. (f) CTR of Č1 as Č6 varies.

CTR w.r.t. the top �ve most frequent categories in Figure 2b to 2f.

Each symbol at the horizontal and vertical axes denotes an item

category. The color variation represents how the CTR changes with

the varying of the item category, and thereby re�ects the items’

mutual in�uences. From the �gures, we have the following central

observations (Obs. I to Obs. III):

Obs. I: Item utility is in�uenced by other items in the same list.

The greater the variation of the color in the heatmap, the stronger

the in�uence between the items. Figure 2b (Č2) and 2c (Č3) display

how the CTR changes with the variation of the other items in the

same list. It is evident that if the category of Č1 is �xed, the CTR of

Č1 will vary with the category of Č2 and Č3.

Obs. II: Item utility is in�uenced by other items across di�erent

lists. Figure 2d to 2f show the inter-list interactions between items.

The CTR of Č1 in Figure 2d to 2f varies with di�erent categories in

the other position, verifying the item in�uence across lists. The color

variation in the heatmap re�ects the change in CTR, and further

indicates the impacts of items. In particular, although Č4 (Figure 2d)

is placed in the di�erent lists, its impact on Č1 is similar to Č2
(Figure 2b) from the same list, illustrating that inter-list interactions

can be comparable to intra-list interactions for multi-list pages.

Obs. III: The in�uence between items shows a negative correlation

with the distance between items.We adopt the Manhattan distance to

measure the distance between two items to study how the distance

a�ects the in�uence between them. The Manhattan distance is the

sum of the di�erence on horizontal and vertical axes, as illustrated

by the red auxiliary lines and dots in Figure 2a. The distances from

Č1 to Čğ (ğ = 2, 3, 4, 5, 6) are 1, 2, 1, 2, 5, respectively. Compared with

Figure 2b (Č2), the variation of the color in Figure 2c (Č3) is more

uniform, which suggests that the impact of a distant item is less

than the adjacent ones in the same list. Similarly, for di�erent lists,

the CTR in Figure 2e (Č5) and Figure 2f (Č6) also varies less than

that in Figure 2d (Č4). The light color of Figure 2f is probably due

to the fact that the dataset only records the observed data by the

user, and the lower-ranked position Č6 is less observed with few

data records when Č1 is clicked.

Therefore, we are motivated to propose a page-level reranking

model that is aware of intra- and inter-list interactions and the

spatial relationships between items across lists.

3 METHODOLOGY

3.1 Problem Formulation

A page-level reranking model takes as inputs the multiple ordered

initial lists on the same page generated by the previous rankers,

and re�nes the ranking lists by considering the mutual in�uence

between items and the impact of the page format.

For a user ī with the associated history list Ąī = [ℎī
1
, . . . , ℎīĪ ],

and amulti-list page Č ∈ P ofĤ di�erent initial lists {Ď1, Ď2, . . . , ĎĤ},

the problem of the page-level reranking is to jointly rerank the Ĥ

lists to optimize the overall utility by considering the page-wise

context. Here, Ī is the maximum length of the user’s history list,

ℎīĩ , ĩ = 1 . . . , Ī is the ĩ-th item recently clicked by the user ī, P is

the page set, and Ďğ , ğ = 1, . . . , Ĥ is the ğ-th list withģğ items. Letģ

be the maximum length of the lists on the page. Then the whole

page of candidate items to be reranked can be represented by an

item matrix XĤ×ģ , where Įğ, Ġ denotes the Ġ-th item in the ğ-th list,

with all lists padded to the maximum length ģ. The utility of a

page is de�ned by the expected sum (or weighted sum) of the click

probability (or conversions etc.) for each item on the page.

3.2 Model Overview

Wepresent Page-level Attentional Reranking (PAR)model and intro-

duce how PAR captures the multifaceted �ne-grained interactions

for the whole page. As depicted in Figure 3, PAR is an end-to-end

reranking model, consisting of three layers: (1) embedding layer,

(2) page-level interaction layer, and (3) score estimation layer.

Firstly, the embedding layer converts each candidate or historical

item to a dense feature vector. Then, in the page-level interaction

layer, we design three modules (i.e., hierarchical dual-side attention,

spatial-scaled attention, and dense network) to capture page-wise

information. Finally, we adopt Multi-gated Mixture-of-Experts to

learn the commonalities and distinctions among di�erent lists and

output the predicted score in the score estimation layer.

3.3 Embedding Layer

The embedding layer takes as input both the candidate item ma-

trix and the user’s history list. Speci�cally, let Į̂ğ, Ġ ∈ RĚĮ be the

embedding of the item Įğ, Ġ , ğ = 1, . . . , Ĥ, Ġ = 1, . . . ,ģ from the can-

didate item matrix, and ℎ̂ĩ ∈ RĚℎ be the embedding of the item ℎĩ ,

ĩ = 1, . . . , Ī from the history list, where ĚĮ and Ěℎ are the embed-

ding size for the candidate and history items, respectively. Then,

we obtain the candidate item embedding matrix X̂ ∈ RĤ×ģ×ĚĮ and

the history item embedding matrix Ĥ ∈ RĪ×Ěℎ after the embedding

layer, where Ī is the history length, Ĥ is the number of lists, andģ

is the number of items in each list.

3.4 Page-level Interaction

To fully exploit the page-wise information, we propose three mod-

ules in the page-level interaction layer: (i) The hierarchical dual-side

attention (HDS-Attn) module learns the personalized intra- and

inter-list interactions, and generates a shared page representation;

(ii) The spatial-scaled attention (SS-Attn) module models the pair-

wise �ne-grained item in�uence with the awareness of the page
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Figure 3: The framework of PAR, which contains: (1) embedding layer, (2) page-level interaction layer, (3) score estimation layer.

format e�ect; (iii) The dense network captures implicit feature in-

teractions within each item. Detailed descriptions for each module

are given in the following sections.

3.4.1 Hierarchical Dual-side A�ention. One of the challenges of

page-level reranking is to incorporate intra- and inter-list interac-

tions on a page (C1 in Section 1). Since there is a natural hierarchical

structure of items forming a list and lists forming a page, we pro-

pose to consider intra-list and inter-list interaction in a hierarchical

way. As shown in the left part of Figure 3, the HDS-Attn module

consists of dual-side attention, item-level aggregation, list-level

self-attention, and list-level aggregation, from bottom to top. The

bottom two parts are designed to extract the intra-list interaction

within each list. To provide personalized reranking, the cross-item

in�uence on the candidate item side requires the personal prefer-

ence information from the history list side. Therefore, we introduce

the dual-side attention for each list to model the mutual in�uence

between these two sides. Then, item-level aggregation is employed

to combine the item information within a list and generate list

representation. The upper two parts, list-level self-attention and list-

level aggregation, are designed to capture the inter-list interaction

between lists and generate the �nal page representation.

Dual-side Attention. Users’ history list carries rich information

for inferring their personal preferences and tastes, which is helpful

for reranking [24, 40]. Moreover, the items in the users’ history

list contribute di�erently for di�erent candidate lists [34, 40]. For

example, game apps in the user’s history list may be more criti-

cal when reranking the "Top-10 Games" list for the user. Inspired

by [29], we design the dual-side attention to model the �ne-grained

correlations between the candidate item side and history list side.

Formally, for each list 'ğ on page % , 8 = 1, . . . , =, the input of the

dual-side attention is the corresponding 8-th item embedding matrix

X̂ğ ∈ Rģ×ĚĮ of the candidate list 'ğ and the history embedding

matrix Ĥ ∈ RĪ×Ěℎ . We maintain an a�nity matrix Wė
ğ ∈ RĚℎ×ĚĮ

for each list to learn the importance of the association between

each pair of items from both candidate and history sides:

Cğ = tanh (ĤWė
ğ X̂

¦
ğ ) ,

AĮğ = So�max
(
tanh (X̂ğWĮ

ğ + (ĤWℎ
ğ )

¦Cğ )
)
,

Aℎğ = So�max

((
tanh (ĤWℎ

ğ + Cğ (X̂ğWĮ
ğ ))

)¦)
,

X̃ğ = AĮğ X̂ğ , H̃ğ = Aℎğ Ĥ ,

(1)

where WĮ
ğ ∈ RĚĮ×ģ,Wℎ

ğ ∈ RĚℎ×ģ are learnable weight matri-

ces. The matrices AĮğ ∈ Rģ×ģ and Aℎğ ∈ Rģ×Ī after the softmax

function represent the attention weights of items in the candidate

list and history list. Then the interacted representation matrices

X̃ğ = [x̃ğ, Ġ ]ģĠ=1 ∈ Rģ×ĚĮ and H̃ğ = [h̃ğ, Ġ ]ģĠ=1 ∈ Rģ×Ěℎ now contain

useful information from both candidate list 'ğ and history list �ī .

Item-level Aggregation.We apply the item-level aggregation to

learn the intra-list interaction and generate the list representations.

Since items contribute di�erently to the representation of the target

list 'ğ , we aggregate the attained item representations with an

attention mechanism [41] to form the list representation ;ğ :

Dğ, Ġ = tanh (WĢ [x̃ğ, Ġ ∥ h̃ğ, Ġ ] + 1Ģ ) ,

Uğ, Ġ =
exp(D¦ğ, Ġ@item)∑ģ
Ġ ′=1 exp(D¦ğ, Ġ ′@item)

,

;ğ =
∑ģ

Ġ=1
Uğ, Ġ [x̃ğ, Ġ ∥ h̃ğ, Ġ ] ,

(2)

where ∥ denotes the vector concatenation. We �rst feed the concate-

nated item representations into a linear layer to get Dğ, Ġ for each

item Gğ, Ġ , where WĢ ∈ RĚĢ×ĚĢ and 1Ģ ∈ RĚĢ (3Ģ = 3Į + 3ℎ) are the

learnable weights. Then the importance of each item is measured by

the similarity ofDğ, Ġ with a item-level query vector @item ∈ RĚĢ . The
item-level query vector @item is a trainable parameter and serves

as the attention query in the item-level aggregation. Next, we nor-

malize the weights Uğ, Ġ and compute the list representation ;ğ by

the weighted sum of each item. To this end, important intra-list

interaction has been fused into the list representation ;ğ . Stacking

all the list representations, we get the list representation matrix

L = [;ğ ]Ĥğ=1 ∈ RĤ×ĚĢ for further use.
List-level Self-attention. Given the list representation matrix L,

we model the inter-list in�uence between di�erent lists on the page

through a list-level self-attention layer:

L̃ = Softmax(LL¦/
√
3Ģ )L , (3)

where L̃ = [;̃ğ ]Ĥğ=1 ∈ RĤ×ĚĢ is the re-weighted list representation

matrix that captures the relationship and correlations between

di�erent lists, and
√
3Ģ is used to stabilize gradients during training.

List-level Aggregation. Finally, built upon the re-weighted list

representations L̃, we employ the list-level aggregation layer to

combine the information from di�erent lists and generate the uni-

�ed page representation ( . Similar to the item-level aggregation,

after a linear transformation, we involve a learnable list-level query

vector @list ∈ RĚĢ for calculating the attention weights V . Then the

re-weighted list representations L̃ are aggregated into a shared page
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representation ( by a weighted sum:

Eğ = tanh (,Ħ ;̃ğ + 1Ħ ) ,

Vğ =
exp(E¦ğ @list)∑Ĥ
ğ′=1 exp(E¦ğ′@list)

,

( =

∑Ĥ

ğ=1
Vğ ;̃ğ ,

(4)

where page representation ( integrates the information of page-

wise contexts and history behaviors, and is shared for all the lists.

3.4.2 Spatial-scaled A�ention. With multiple lists on one page, the

arrangement of lists and items, i.e., the page format, becomes an

essential issue to be considered (C2 in Section 1). However, no

previous work on page-level reranking has discussed such an issue

before. Di�erent page formats change the location of items and

therefore change the distances between them. In Section 2, we ob-

serve that the in�uence between items generally shows a negative

correlation with the distance between them. Hence di�erent page

formats yield diverse in�uences between items. Thus, we propose

the SS-Attn module to estimate the pairwise item in�uence with

the consideration of the spatial relationship. Speci�cally, SS-Attn

adjusts the attention weights according to the relative distance

between items on the page, so that closer items have a stronger

in�uence on each other. The relative distance can be altered de-

pending on the page format, showing that the SS-Attn is �exible

and can be adapted to di�erent formats.

As such, with a total of =< items on the page, we introduce a

symmetric distance matrix D ∈ RĤģ×Ĥģ , whose element 3Ħ,ħ g 0

indicates the geometric distance between the corresponding pair

of items (?, @). In this work, we adopt the Manhattan distance to

build the distance matrix. For example, in Figure 2a, the Manhattan

distances from %1 to %ğ (8 = 2, 3, 4, 5, 6) are 1, 2, 1, 2, 5, respectively.
It is worth noting that the design of the distance matrix is �exible

and can be customized according to the page formats in di�erent

page-level reranking scenarios. Other distance measurements (e.g.,

Euclidean distance, slot counting) are also applicable.

Concretely, we �rst reshape the embedding matrix of the can-

didate items X̂ ∈ RĤ×ģ×ĚĮ into X̄ ∈ RĤģ×ĚĮ , where each row

ḠĦ (? = 1, . . . , =<) of the matrix X̄ is the feature vector of a candi-

date item. The input of the SS-Attn module is the reshaped item ma-

trix X̄ and the distance matrix D. To involve the page format e�ect

(i.e., the larger the distance, the less the in�uence between items), we

transform the distance matrix by a learnable sigmoid function [38].

The learnable sigmoid function 5 parameterized by a scalar E maps

the distance 3Ħ,ħ of item pair (?, @) to a positive distance-aware

in�uence factor 3̂Ħ,ħ of range (0, 1], 5 (·|E) : R∗ → (0, 1].

3̂Ħ,ħ = 5 (3Ħ,ħ |E) =
1 + exp(E)

1 + exp(E + f3Ħ,ħ)
, (5)

where E ∈ R is a learnable scalar that determines the steepness of

function 5 (·|E), and f > 0 is a hyper-parameter for normalizing

the distance 3Ħ,ħ and stabilizing the training. In our experiment, f

is set to 0.1. Note that 5 (·|E) is a monotonically decreasing function

w.r.t. the distance and satis�es 5 (0|E) = 1 and 5 (+∞|E) → 0, i.e.,

the in�uence of between the items gradually decreases from 1 to 0

as the distance grows.

Next, we use the obtained in�uence factor 3̂Ħ,ħ to scale the pair-

wise mutual in�uence between items on the page. Multi-head atten-

tion is adopted for modeling the interactions between any pair of

items on the page, while the attention weights are scaled according

to the distance-aware in�uence factor. Suppose � is the number

of heads, we maintain � di�erent learnable sigmoid functions to

learn di�erent levels of the page format e�ect, with an individual

parameter E (Ę ) for the 1-th attention head, 1 = 1, . . . , �. We form

all the 3̂Ħ,ħ for the 1-th head into a matrix D̂(Ę ) , and numerically

scale the preliminary self-attention weights:

Ō(Ę )
= So�max

©
«
q ((X̄, (Ę )

č
) (X̄, (Ę )

ć
)¦) » D̂(Ę )

√
3ė

ª®
¬
(X̄, (Ę )

Ē
),

where » is the element-wise product, the preliminary attention

weights (X̄, (Ę )
č

) (X̄, (Ę )
ć

)¦ are adjusted according to the distance-

aware in�uence factors, and 3ė is the dimension of the vectors

in X̄,
(Ę )
č

and X̄,
(Ę )
ć

. Note that the non-negative monotonically

increasing function q is introduced to avoid negative attention

weights, as negative preliminary attention weights can invert the

distance-aware in�uence and violates the negative correlation be-

tween distances and in�uences. Here, we use so�plus function.

Finally, we concatenate the multi-head spatial-scaled attention

outputs, and apply a linear transformation to get the pairwise in�u-

ence matrix Ō ∈ RĤģ×Ěĥ , Ō = [Ō(1) ∥ . . . ∥ Ō(þ) ]Wċ , where 3ĥ
is the attention output size. We reshape the matrix Ō ∈ RĤģ×Ěĥ

back to O ∈ RĤ×ģ×Ěĥ , where the vector >ğ, Ġ ∈ RĚĥ denotes the

pairwise in�uence vector for the 9-th item in the 8-th list.

3.4.3 Dense Network. In addition to the HDS-Attn and SS-Attn, we

employ a fully-connected network to capture the implicit feature

interactions within each item. We feed each item embedding Ĝğ, Ġ
into a shared MLP to obtain the dense feature Ağ, Ġ = MLP(Ĝğ, Ġ ) for
the latter reranking score estimation.

3.5 Reranking Score Estimation

After the page-level interaction layer, we obtain the shared page

representation ( , the pairwise item in�uence vector >ğ, Ġ , and the

dense feature Ağ, Ġ for item Gğ, Ġ . Although these features incorporate

page and item-level information, the commonalities and distinctions

of user behaviors on di�erent lists are remained to be solved.

As discussed before (C3 in Section 1), the user’s behaviors may

not only share some basic patterns (e.g., position bias) and underly-

ing preferences, but also have distinctions for di�erent lists due to

themes and formats. To this end, we adopt the Multi-gated Mixture-

of-Experts (MMoE [30]) module, where several expert sub-models

are shared across all lists. Each list possesses a speci�c gating net-

work to "select" a subset of experts to use. Through the expert and

gating networks, our model automatically adjusts parameterization

between modeling shared information and list-speci�c informa-

tion, so as to exploit the common behavior patterns while paying

attention to the list-speci�c patterns.

As shown in Figure 3, there are � parallel expert networks

{4ġ (·)}āġ=1, which are all MLPs with ReLU activations, to capture

di�erent aspects of behavior patterns. For each list 8 , we maintain

a separate fully-connected gating network 6ğ (·) to learn a linear
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combination of the expert outputs Wğ, Ġ ∈ Rā , with Wğ, Ġ,ġ being the :-

th element of Wğ, Ġ . To preserve the list-speci�c information, we feed

the combined feature vector Îğ, Ġ into a list-speci�c tower network

Cğ (·) to get the �nal score ~̂ğ, Ġ for the 9-th item in the 8-th list.

Wğ, Ġ = So�max(6ğ ( [( ∥ Ağ, Ġ ∥ >ğ, Ġ ])) ,

Îğ, Ġ =
∑ā

ġ=1
Wğ, Ġ,ġ × 4ġ ( [( ∥ Ağ, Ġ ∥ >ğ, Ġ ]) ,

~̂ğ, Ġ = Cğ (Îğ, Ġ ) .
(6)

We sort items in each list by the scores ~̂ğ, Ġ to get the �nal

rerankings. Given the click label matrix Y of size = ×< where ~ğ, Ġ
denotes the click signal for the 9-th item in the 8-th list, we optimize

the model via binary cross-entropy loss on the training page set P:

L =

∑
P

∑Ĥ

ğ=1

∑ģ

Ġ=1
~ğ, Ġ log ~̂ğ, Ġ + (1 − ~ğ, Ġ ) log(1 − ~̂ğ, Ġ ) . (7)

Computational Complexity Analysis. The complexity of PAR

is O(=2<2), where = is the number of lists and< is the length of

the lists. Its complexity is comparable to most existing models of

O(=<2) (e.g., PRM [33], DHANR [9]), as the number of lists on the

page = is usually less than 5 due to the limit of the screen size.

4 EXPERIMENT

4.1 Experiment Settings

4.1.1 Datasets. Our experiments are conducted on a public dataset,

Cloud Theme Click Dataset1, and a proprietary dataset, AppStore.

• Cloud Theme Click Dataset [10] (CTC for short) records the

click data of Cloud Theme in Taobao app. The dataset includes

1,423,835 click records from 355 di�erent themes during a 6-day

promotion season, users’ purchase history before the promotion,

and the embedding of 720,210 users and 1,361,672 items.

• AppStore is collected from a mainstream commercial app store,

from October 16, 2021 to November 1, 2021. The dataset contains

47,003,121 pages, 28,632,998 users and 1365 apps. Each app has

32 features (e.g., app developer, app category). Each page is in

the form of an F-shape with one vertical list inserted by four

horizontal lists, and each user has a history list of behaviors

collected in real time.

4.1.2 Page and click generation for public dataset. As there is no

publicly available dataset with page data, we use the click logs

of the public CTC dataset to construct the pages. For each user,

we �rst construct lists from her/his positively interacted themes

with at least one click. Next, each page is formed by four lists from

di�erent themes that are horizontally stacked from top to bottom.

We randomly sample lists from all the themes if less than four lists

have been clicked. Four DNN models are trained separately as the

initial rankers to generate the initial rankings of length 10.

An oracle click model (e.g., [8, 25]) is then adopted to simulate

necessary click data on the obtained new pages. We mainly follow

the click simulation in Seq2Slate [4] to decompose the click proba-

bility of an item into the product of relevance, position decaying,

and dissimilarity probability. We use the original click label of an

item as the relevance probability, which is equal to 1 if clicked, and

0 otherwise. If the item is placed at 8-th position in the 9-th list,

the position decaying probability is 1/(8Ĉ1 9Ĉ2 ), where [1 and [2 are
the horizontal and vertical decay parameters. Here we set [1 and

1https://tianchi.aliyun.com/dataset/dataDetail?dataId=9716

[2 to 0.4 and 0.5. When observing an item, the user may tend to

click the item dissimilar/diverse to its surrounding items [18, 28].

The cosine similarity between item embeddings is used to compute

the dissimilarity probability to introduce high-order interaction

between items. After the generation of clicks, all baselines and our

model PAR are trained based on the synthetic click data.

4.1.3 Baselines. Since currently there is only onework,DHANR [19],

that focuses on page-level reranking, we modify some models in

related �elds that utilize page-level information as baselines, e.g.,

HMoE [23] in multi-scenario ranking, TRNN [27] in whole-page

optimization. We also design GlobAtt to a global multi-head self-

attention structure to model the mutual in�uence between any

pairs of items on the page. We also choosemiDNN [44], GSF [3],

DLCM [2], PRM [33], and SetRank [32] as list-level reranking

baselines for multiple lists on the same page. Multiple models are

trained separately on di�erent lists.

4.1.4 Evaluation metrics. All the reranking models are evaluated in

terms of relevance-based and utility-based metrics. For relevance-

based metrics, we adopt widely-usedMAP and nDCG [22] following

previous work [2, 27, 33]. Despite that there are multiple lists on

the page, we calculate nDCG andMAP for each list and report their

averaged nDCG and MAP.

As for utility-based metrics, we employ the average number of

clicks on the page Utility, and the sum of the click probabilities

for all items on a page sCTR, following [39]. In addition, we also

compute the sum of click probabilities on each list, such as the

sum of click probabilities on vertical lists B�)'Ĭ , and the sum of

click probabilities on the �rst horizontal lists B�)'ℎ1. On the public

CTC dataset, the click probabilities and clicks of the reranked lists

are generated by the same oracle click model used in 4.1.2. The

AppStore dataset records the real user clicks on the F-shape page.

Its click probabilities and clicks on the reranked lists are given by a

click model for the F-shape page, FSCM [14].

4.1.5 Reproducibility. The implementation of our model is avail-

able2. We adopt Adam as the optimizer. The learning rate is 2×10−4,
and the parameter of ;2 regularization is 2 × 10−4. The batch size

and the embedding size of the categorical feature are set to 128

and 16. The number of experts and the architecture of experts and

towers in MMoE are 12, [200, 80], and [80], respectively. To ensure

a fair comparison, we also �ne-tune all baseline models to achieve

their best performance.

4.2 Overall Performance

The overall performance is reported in Table 1, from which we have

the following observations.

Firstly, our model PAR performs signi�cantly better than all the

baselines on both datasets. Methods with page-wise information

generally work better than list-level methods, validating the bene�t

of utilizing page-level information. PAR surpasses all the baselines

on the two datasets. As presented in Table 1, PAR improves over the

best baseline on CTC dataset with respect to Utility, sCTR, nDCG,

and MAP by 5.276%, 3.115%, 4.623%, and 8.485%, respectively. On

2The TensorFlow implementation is available at: https://github.com/YunjiaXi/Page-
level-Attentional-Reranking. The MindSpore implementation is available at: https:
//gitee.com/mindspore/models/tree/master/research/recommend/PAR

https://github.com/YunjiaXi/Page-level-Attentional-Reranking
https://github.com/YunjiaXi/Page-level-Attentional-Reranking
https://gitee.com/mindspore/models/tree/master/research/recommend/PAR
https://gitee.com/mindspore/models/tree/master/research/recommend/PAR
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Table 1: Overall performance on the AppStore and CTC datasets.

Models
AppStore dataset CTC dataset

Utility sCTR sCTRv sCTRh1 sCTRh2 sCTRh3 sCTRh4 nDCG MAP Utility sCTR sCTRh1 sCTRh2 sCTRh2 sCTRh3 nDCG MAP

INIT 1.0459 1.0571 0.2896 0.6953 0.0391 0.0122 0.0098 0.6260 0.5087 1.2706 1.2545 0.5030 0.3747 0.3161 0.0607 0.4953 0.3241

miDNN 1.1704 1.1993 0.3428 0.7588 0.0396 0.0186 0.0107 0.6375 0.5204 1.3530 1.3305 0.5302 0.3884 0.3439 0.0680 0.5090 0.3415

GSF 1.2183 1.1866 0.3970 0.7505 0.0420 0.0146 0.0142 0.6344 0.5171 1.2791 1.3252 0.5308 0.3899 0.3386 0.0659 0.5238 0.3618

DLCM 1.3218 1.2593 0.4521 0.8052 0.0361 0.0176 0.0107 0.6234 0.5020 1.3494 1.3603 0.5371 0.4064 0.3504 0.0664 0.5303 0.3692

PRM 1.3438 1.2748 0.4497 0.8242 0.0430 0.0151 0.0117 0.6403 0.5238 1.3722 1.3710 0.5474 0.4014 0.3539 0.0684 0.5212 0.3578

SetRank 1.3535 1.2938 0.4863 0.8013 0.0366 0.0166 0.0127 0.6388 0.5223 1.3643 1.3635 0.5432 0.4026 0.3507 0.0671 0.5300 0.3689

GlobAtt 1.3896 1.3611 0.5335 0.7586 0.0415 0.0169 0.0107 0.6245 0.5033 1.3678 1.3638 0.5449 0.4039 0.3474 0.0676 0.5185 0.3538

TRNN 1.3970 1.3641 0.5029 0.7899 0.0431 0.0172 0.0111 0.6351 0.5172 1.3750 1.3602 0.5533 0.3965 0.3430 0.0674 0.5220 0.3587

HMoE 1.3706 1.3744 0.5394 0.7661 0.0414 0.0167 0.0108 0.6373 0.5203 1.3615 1.3608 0.5452 0.3968 0.3492 0.0696 0.5236 0.3609

DNAHR 1.4116 1.3872 0.5312 0.8213 0.0405 0.0107 0.0078 0.6312 0.5121 1.3303 1.3512 0.5382 0.3992 0.3450 0.0687 0.5233 0.3597

PAR 1.5024* 1.4457* 0.5801* 0.8413* 0.0503 0.0161 0.0146 0.6333 0.5151 1.4446* 1.4137* 0.5693* 0.4174* 0.3594 0.0677 0.5548* 0.4005*

∗ denotes statistically signi�cant improvement (measured by t-test with Ħ-value < 0.05) over the best baseline.

AppStore dataset, PAR also achieves 6.432% and 4.217% improve-

ment over the best baseline in terms of Utility and sCTR. This

demonstrates the necessity of modeling the multifaceted dynamic

interactions and the page format in page-level reranking.

Secondly, di�erent page formats result in di�erent click distribu-

tions. As illustrated in Table 1, the top clicks are predominantly

located on the vertical and the �rst horizontal lists on the F-shape

pages of AppStore dataset. On the all-row pages of CTC dataset,

clicks are concentrated on the �rst three horizontal lists and the

probability of clicking decreases with the positions of the horizontal

list. PAR shows greater improvement in these major lists by ex-

ploiting more useful information. Page-level baselines outperform

list-level models on AppStore dataset, but sometimes this is not

the case for the CTC dataset, which may also be due to the di�er-

ent page formats. The inter-list interaction for pages of multiple

horizontal lists may be less than that for F-shape pages.

Lastly, the performance of the models on the AppStore and CTC

datasets diverges in terms of the relevance-based metrics, nDCG and

MAP. On the CTC dataset, PAR achieves the best nDCG and MAP,

but on the AppStore dataset, the best relevance-based metrics are

achieved by the list-level reranking method, PRM. This may be

attributed to the fact that CTC dataset has groundtrue relevance

labels, whereas the AppStore does not. The click labels in AppStore

dataset are directly used for computing the relevance-based met-

rics, following [2, 27, 33]. Yet the clicks could be biased, and there

exist some relevant items that have not been clicked. The list-level

approaches tend to place the past-clicked items �rst, and therefore

obtain higher nDCG and MAP. In comparison, the page-level ap-

proaches combine information from multiple lists to �nd relevant

items that might not have been clicked to optimize the total utility

and often do not necessarily place clicked items at top positions.

Such an observation shows that using past clicks for evaluation may

not be able to re�ect the true performance for page-level reranking.

4.3 In-depth Analysis

4.3.1 Ablation study. To investigate the e�ectiveness of each com-

ponent in PAR, we design several variants of PAR and conduct a

series of experiments on AppStore and CTC datasets.

• PAR-DSA replaces the dual-side attention in HDS-Attn with a

self-attention, thus removing the user history from the module.

• PAR-HDSA removes the HDS-Attn module.

• PAR-scale replaces the SS-Attn module with self-attention.

• PAR-SSA removes the SS-Attn module.

• PAR-DN removes the dense network.

• PAR-MMoE replaces the MMoE module with a single MLP.

Top 2 and bottom 2 items 
of the sub-ver tical list of length 6.

Top 2 and bottom 2 items 
of the sub-ver tical list of length 6.

(a) (b)

Figure 4: (a) The attention weights (normalized along the

horizontal axis) of the list-level self-attention in HDS-Attn.

(b) The pairwise attention weights between the target item

(highlighted by a red box) and other items in SS-Attn.

The comparison of the above variants and the original PAR on

AppStore and CTC datasets are presented in Table 2. Compared to

the original PAR, the performances of the variants all decline to

some extent, indicating the e�ectiveness of each module. Among

all the variants, PAR-HDSA generally su�ered the greatest drop

in utility, which suggests that incorporating intra- and inter-list

interaction can enhance the performance of page-level reranking.

The decline of PAR-DSA indicates the importance of personalized

preferences in user behaviors for reranking. Removing the MMoE

and SSA modules also introduces a large decrease, illustrating the

impact of modeling the di�erences and commonalities between lists

and the page format. There is no signi�cant gap between the results

of PAR-SSA and PAR-scale, revealing that it is the distance-aware

in�uence factor that contributes primarily to the SSA module. The

basic self-attention is insu�cient to model di�erent page formats.

4.3.2 Case Study. To explore the mutual in�uence between lists

and the spatial relationship between items, we select a page from

the AppStore and visualize the attention weights from list-level

self-attention in HDS-Attn and spatial-scaled attention (SS-Attn).

Figure 4(a) presents the heatmap of the vertical list E and the four

horizontal lists ℎ1, ℎ2, ℎ3, and ℎ4, with each row being the attention

weights of a list. In Figure 4(a), all lists have a high attention weight

for ℎ1, probably because ℎ1 has the most clicks and can provide

more information. List E , neighboring all the other lists, receives

the next highest number of clicks, and thus the other lists also have

a relatively high attention weight for E . Conversely, ℎ2-ℎ4, located

further away with lower CTR, have smaller attention weights.

As for spatial-scaled attention, we select a target item at the third

position of the second horizontal list and then visualize its attention

weights on all the items on the F-shape page in Figure 4(b), from

which we observe a general pattern of spatial decay. The target

item has the greatest attention weight on itself, and the weights on
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Table 2: Ablation on AppStore and CTC datasets.

Variants
AppStore dataset CTC dataset

Utility sCTR sCTRv sCTRh1 sCTRh2 sCTRh3 sCTRh4 nDCG MAP Utility sCTR sCTRh1 sCTRh2 sCTRh2 sCTRh3 nDCG MAP

PAR-DSA 1.4482 1.4236 0.5515 0.8009 0.0432 0.0171 0.0110 0.6292 0.5097 1.3878 1.3882 0.5493 0.4133 0.3584 0.0673 0.5379 0.3789

PAR-HDSA 1.4129 1.4193 0.5566 0.7917 0.0431 0.0172 0.0108 0.6337 0.5154 1.3629 1.3757 0.5593 0.4113 0.3406 0.0643 0.5334 0.3736

PAR-scale 1.4136 1.4356 0.5547 0.8091 0.0436 0.0172 0.0109 0.6305 0.5116 1.3895 1.3933 0.5589 0.4095 0.3556 0.0692 0.5399 0.3816

PAR-SSA 1.4595 1.4338 0.5570 0.8083 0.0414 0.0165 0.0105 0.6328 0.5143 1.3885 1.3914 0.556 0.4092 0.3586 0.0676 0.5393 0.3809

PAR-DN 1.4743 1.4343 0.5555 0.8076 0.0431 0.0171 0.0110 0.6327 0.5144 1.4219 1.4026 0.5657 0.4151 0.3552 0.0666 0.5423 0.3848

PAR-MMoE 1.3950 1.4203 0.5501 0.7997 0.0427 0.0169 0.0108 0.6349 0.5171 1.3716 1.3751 0.5531 0.4056 0.3484 0.068 0.5279 0.3658

PAR 1.5024 1.4457 0.5801 0.8413 0.0503 0.0161 0.0146 0.6333 0.5151 1.4446 1.4137 0.5693 0.4174 0.3594 0.0677 0.5548* 0.4005*

∗ denotes statistically signi�cant improvement (measured by t-test with Ħ-value < 0.05) over the best variant.

its surrounding items roughly follow the pattern that the further

away the item is, the less weight it gets. Furthermore, we �nd that

there are outliers that violate the spatial decay pattern. In the �rst

horizontal list, the �rst item 81 and second item 82 have higher

attention weights (0.0149 and 0.0150) than the third item 83 (0.0148),

though 83 is closer to the target item. The possible reason is that

81 and 82 share the same category with the target item (they are

all short-video apps), while 83 is a search engine app. The similar

category promotes the pairwise mutual in�uence between items.

As such, we conclude that the SS-Attn can automatically learn the

combination of the spatial e�ect and the pairwise in�uence.

5 RELATED WORKS

5.1 Reranking

Most existing rerankingmethods are list-level and rerank separately

for each individual list [2, 4, 12, 13, 32, 33, 39]. Various network

structures have been applied for modeling the mutual in�uences

within the list. For example, miDNN [44] uses DNN with global

feature extension to capture mutual in�uences between items. A

group-wise scoring function (GSF) [3] is learned by enumerating

all the feasible item permutations of the list. DLCM [2] employs

the gated recurrent unit (GRU) to encode the whole ranking list

into the item representations. PRM [33] and SetRank [32] adopt

the self-attention mechanism to model the in�uence between any

pair of items in the list. Yet the performance of list-level reranking

algorithms is usually suboptimal when the recommendation page

presented to the user is in a multi-list style.

Hao et al. [19] �nd the information from other lists on the page

can improve the performance of reranking, and propose a deep and

hierarchical attention network reranking (DHANR) model. They

aggregate the page-wise context into a static page representation

vector, and apply an identical list-level reranking algorithm for all

the lists with the page representation as shared side information.

However, DHANR fails to capture the dynamic page-level interac-

tion between items, and is insensitive to the di�erent page formats

or the commonalities and distinctions between lists. Our proposed

PAR fully exploits the page-wise context and captures multifaceted

�ne-grained item in�uences across lists.

5.2 Multi-scenario Learning to Rank

Multi-scenario learning to rank aims to improve the overall perfor-

mance in di�erent scenarios, which can be generally classi�ed into

two categories: (1) multi-task learning (MTL) [6, 16, 23, 43], and (2)

multi-agent reinforcement learning (MARL) [11, 20]. MTL-based

methods formulate the ranking problems from di�erent scenarios

as di�erent tasks, and devise a single model to solve the multiple

tasks simultaneously. As for MARL-based methods, each scenario

has a local ranking agent, and the agents are trained collaboratively

to improve the overall performance. However, the agents are up-

dated in an online setting with instant feedback, which is di�erent

from ours.

Page-level reranking intends to simultaneously rerank lists on

the same page, which emphasizes on user behaviors when exam-

ining a recommendation page as a whole. How to model the page

format and contexts is key to page-level reranking, which is ignored

in multi-scenario learning to rank.

5.3 Whole-page Optimization

Whole-page optimization focuses on improving the display of the

recommendation page, which generally falls into two categories.

The �rst category [31, 35–37, 42] aims to �nd the optimal presenta-

tion style for each item on the page. Presentation style includes po-

sitions, image sizes, text fonts, etc. The problem is then formulated

as a combinatorial optimization problem of determining positions

and other presentation styles for each item, where graph match-

ing [36, 37], bandit [35], or reinforcement learning (RL) [31, 37, 42]

algorithms are proposed. This type of method, however, is designed

for mapping one single initial list into a 2D geometrical layout,

which is di�erent from our work — the input of PAR is multiple

initial lists of di�erent themes. The second category [5, 9, 15, 27] is

designed to select and rank the widgets (list of items) of the page.

Given a set of widgets where the order of items for each widget is

�xed, these methods try to select personalized themes of widgets

to meet users’ needs. These models, though involving page-level

information, are not the focus of our work. In this work, we jointly

optimize the arrangement of items for multiple lists by considering

the page-wise context.

6 CONCLUSION

In this work, we study the problem of page-level reranking, which

requires a uni�ed model to rerank multiple lists simultaneously on

the same recommendation page. We conduct a data-driven study

based on a real-world multi-list dataset, and propose a novel Page-

level Attentional Reranking (PAR) model. We design a hierarchical

dual-side attention module and a spatial-scaled attention network

to learn the �ne-grained spatial-aware item interactions across lists.

Besides, we adopt the multi-gated mixture-of-experts module to

capture the commonalities and distinctions of user behaviors among

di�erent lists. Extensive experiments show that PAR signi�cantly

outperforms the state-of-the-art baselines.
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