
Noname manuscript No.
(will be inserted by the editor)

Streaming Multiple Aggregations Using Phantoms

Rui Zhang · Nick Koudas · Beng Chin Ooi · Divesh Srivastava · Pu Zhou

the date of receipt and acceptance should be inserted later

Abstract Data streams characterize the high speed and large
volume input of a new class of applications such as net-
work monitoring, web content analysis and sensor networks.
Among these applications, network monitoring may be the
most compelling one – the backbone of a large Internet ser-
vice provider can generate 1 petabyte of data per day. For
many network monitoring tasks such as traffic analysis and
statistics collection, aggregation is a primitive operation. Var-
ious analytical and statistical needs naturally lead to related
aggregate queries. In this article, we address the problem of
efficiently computing multiple aggregations over high speed
data streams based on the two-level query processing archi-
tecture of GS, a real data stream management system de-
ployed in AT&T. We discern that additionally computing
and maintaining fine-granularity aggregations (called phan-
toms) has the benefit of supporting shared computation. Based
on a thorough analysis, we propose algorithms to identify
the best set of phantoms to maintain and determine allo-
cation of resources (particularly, space) to compute the ag-
gregations. Experiments show that our algorithm achieves

Rui Zhang
University of Melbourne
E-mail: rui@csse.unimelb.edu.au

Nick Koudas
University of Toronto
E-mail: koudas@cs.toronto.edu

Beng Chin Ooi
National University of Singapore
E-mail: ooibc@comp.nus.edu.sg

Divesh Srivastava
AT&T Labs–Research
E-mail: divesh@research.att.com

Pu Zhou
University of Melbourne
E-mail: puz@csse.unimelb.edu.au

near-optimal computation costs, which outperforms the best
adapted algorithm by more than an order of magnitude.

Keywords Data stream · Aggregation · Multiple-query
optimization · Phantom · GS

1 Introduction

The phenomenon of data streams is real. In data stream ap-
plications, data arrives very fast and the volume is so high
that one may not wish to (or be able to) store all the data;
yet, the need exists to query and analyze this data.

The quintessential application seems to be the process-
ing of IP traffic data in the network (see, e.g., [4,25]). Routers
forward IP packets at high speed, spending typically a few
hundred nanoseconds per packet. Processing the IP packet
data for a variety of monitoring tasks, e.g., keeping track
of statistics, and detecting network attacks, at the speed at
which packets are forwarded is an illustrative example of
data stream processing. One can see the need for aggregate
queries in this scenario: to provide simple statistical sum-
maries of the traffic carried by a link, to identify normal
activity vs. activity under denial-of-service attack, etc. For
example, a common IP network analysis query is: “for ev-
ery source IP and 5 minute time interval, report the total
number of packets, provided this number of packets is more
than 100”. Thus, monitoring aggregations on IP traffic data
streams is a compelling application.

There has been a concerted effort in recent years to build
data stream management systems (DSMSs), either for gen-
eral purpose or for a specific streaming application. Many of
the DSMSs are motivated by monitoring applications. Ex-
ample DSMSs are in [2,6,8,12,31,22]. Of these DSMSs,
GS (originally named Gigascope [12]) is tailored for pro-
cessing high speed IP traffic data. This is, in large measure,
due to GS’s two layer architecture for query processing. The

2

low level query nodes (called LFTAs1) perform simple op-
erations such as selection, projection and aggregation on a
high speed stream, greatly reducing the volume of the data
that is fed to the high level query nodes (called HFTAs). The
HFTAs can then perform more complex processing on the
reduced volume (and speed) of data obtained from LFTAs.

Various analytical and statistical needs naturally lead to
related aggregate queries on data streams. They may dif-
fer only in the choice of grouping attributes. For example,
“for every destination IP, destination port and 5 minute inter-
val, report the average packet length”, and “for every source
IP, destination IP and 5 minute interval, report the average
packet length”. They may also differ in the length of the
time window. For example, “for every destination IP, desti-
nation port and 3 minute interval, report the average packet
length”. An extreme case is that of the data cube, that is,
computing aggregations for every subset of a given set of
grouping attributes; more realistic is the case where speci-
fied subsets of the grouping attributes (such as “source IP,
source port”, “destination IP, destination port” and “source
IP, destination IP”) are of interest. In this article, we ad-
dress this problem of efficiently computing multiple aggre-
gations over high speed data streams, based on the two-
level (LFTA/HFTA) query processing architecture of GS.
Our proposed technique, called SMAP (Streaming Multiple
Aggregations using Phantoms), is motivated by the idea of
maintaining phantoms, which are additional queries main-
tained for sharing computation. SMAP consists of an intel-
ligent way to choose phantoms and an effective resource al-
location scheme. Together, they minimize the overall pro-
cessing cost. Our contributions are summarized below:

– Our first contribution is the insight that when computing
multiple aggregate queries, additionally computing and
maintaining phantoms may reduce the overall query pro-
cessing cost due to shared computation. Phantoms are
fine-granularity aggregate queries that, while not of in-
terest to the user, allow for shared computation between
multiple aggregate queries over data streams.

– Our second contribution is an investigation into the prob-
lem of identifying beneficial configurations of phantoms
and user queries. We formulate this problem as a cost op-
timization problem, which consists of two sub-problems:
how to choose phantoms and how to allocate resource
(particularly, space) amongst a set of phantoms and user
queries. We formally show the hardness of both sub-
problems and propose heuristics for them based on de-
tailed analyses.

– Our final contribution is a comprehensive experimental
study, based on real IP traffic data, as well as synthetic
data, to understand the effectiveness of our technique.

1 FTA stands for “Filter, Transform, Aggregate”.

We demonstrate that SMAP results in near optimal con-
figurations (within 15-20% most of the time) for pro-
cessing multiple aggregations over high speed streams.
It reduces processing time over the best adapted tech-
nique by an order of magnitude. Further, choosing a con-
figuration is extremely fast, taking only a few millisec-
onds; this permits adaptive modification of the configu-
ration to changes in the data stream distributions.

This article is an extended version of our earlier paper [33].
There, we presented our technique for cases where the queries
differ only in their grouping attributes. Here, we extend the
technique to cases where the queries can also differ in the
length of the time window. To this end, we present mecha-
nisms to share computation among queries of different time
window lengths and develop a more comprehensive cost model
to accommodate the new query setting. In addition, we give
a more detailed analysis of our algorithms and provide an
improved collision rate model used in choosing phantoms.
Finally, we have conducted more extensive experiments to
demonstrate the effectiveness of SMAP for queries with dif-
ferent query window lengths.

The rest of the article is organized as follows. We first
motivate the problem and our solution in Section 2. We then
formulate our problem, present its cost model, give hardness
result of the problem and summarize our technique, SMAP,
in Section 3. Section 4 presents our phantom choosing algo-
rithm. Section 5 derives a model to estimate collision rates
of hash tables, which is a key component of our space allo-
cation scheme. Section 6 analyzes space allocation schemes.
Section 7 shows how to extend SMAP to handle aggregate
queries with different time window lengths. Section 8 re-
ports our experimental study. Related work is discussed in
Section 9 and Section 10 concludes the article.

2 Background and Motivation

In this section, we describe the problem of efficiently pro-
cessing multiple aggregations over high speed data streams,
based on the architecture of GS, and motivate our solution
techniques, in an example-driven fashion.

2.1 GS’s Two Level Architecture

GS splits a (potentially complex) query over high speed tu-
ple data streams into two parts, (i) simple low-level queries
(at the LFTA) over high speed data streams, which serve
to reduce data volumes, and (ii) (potentially complex) high-
level queries (at the HFTA) over the low speed data streams
seen at the HFTA. LFTAs can be processed on a Network
Interface Card (NIC), which has both processing capabil-
ity and limited memory (a few MB). HFTAs are typically

3

processed in a host machine’s main memory (which can be
hundreds of MB to several GB).

2.2 Single Aggregation in GS

Let us first see how a single aggregate query is processed in
GS. Consider the following query Q0.

Q0: select tb, SourceIP, count(*) as cnt
from IPPackets
group by time/5 as tb, SourceIP

IPPackets is a relation defined by the user to represent IP
packets. Its attributes are extracted from raw network data,
usually containing SourceIP, SourcePort, DestinationIP, Des-
tinationPort, time, and maybe other attributes such as Pack-
etLength, depending on its exact definition given by the user.
The meaning of SourceIP, SourcePort, DestinationIP and
DestinationPort are self-explanatory. The attribute time is
the timestamp when the packet arrives. Without loss of gen-
erality, we assume the time unit to be a minute in this article.
What the above query does is to obtain the number of pack-
ets sent from each sender every 5 minutes (that is, show each
one’s IP address with the number of packets sent from it).

Figure 1 is an abstracted model of processing single ag-

2

2

c 1

MH

ML

cnt

LFTA

HFTA

SrcIP

2 3

24 1

17 1

3

c

Fig. 1 Single aggregation in GS

gregate queries in GS. The LFTA and HFTA are denoted by
ML and MH , respectively. When a network data stream tu-
ple arrives, it is observed at ML; ML maintains a hash table
consisting of a number of entries, each entry being a {group,
count} pair. The item group always stores the most recently
observed values of the grouping attributes of the query. For
example, in query Q0, we group the tuples by the attribute
SourceIP for every 5 minutes, so group stores the most re-
cent source IP hashing to this entry. The second item of an
entry, count, keeps track of the number of times the values
stored in group have been observed continuously. As a new
tuple r hashes to entry bk, GS checks if r belongs to the
same group as the existing group in bk . If yes, bk’s count is
incremented by 1. Otherwise, we say a collision occurs. In

this case, first the current entry in bk is evicted to MH . Then,
the values of r’s grouping attributes are stored in bk’s group
and bk’s count is set to 1. Because MH is much larger than
ML, for the data in MH , we can store all the groups in a big
table with their counts. When the group in the evicted entry
already exists in the table in MH , we just add the count in the
evicted entry to the existing count of the group in the table.

Queries in GS are processed in an epoch by epoch fash-
ion (that is, in tumbling time windows2). For example, Q0
has a query window length of 5 minutes. This means that
at the end of every 5 minute window, all the entries in ML
are evicted to MH to compute the aggregation results for this
time window – this process is called the end-of-epoch (EE)
update and we will discuss more about it in Section 3.2.
At MH , counts of tuples in the same group and in the same
epoch are combined to compute the desired query answer.

GS is especially designed for processing network level
packet data. Usually this data exhibits a lot of clusteredness,
that is, all packets in a flow have the same source/destination
IP/port. Therefore, the likelihood of a collision is very low
until many packets have been observed. In this fashion, the
data volume fed to MH is greatly reduced.

2.3 Cost of Processing a Single Aggregation

In GS, LFTAs are run on a Network Interface Card (NIC),
which has a memory constraint. Therefore, ML has a size
constraint depending on the hardware (typically several hun-
dred KB). MH has much more space and reduced volume of
data to process, so the processing at MH does not dominate
the total cost. The bottleneck of the processing arises from
the following two types of costs:

– The cost of looking up a hash table in ML, and possi-
ble update on the hash table in case of a collision. This
whole operation, called a probe, has a nearly constant
cost c1.

– The cost of evicting an entry from ML to MH . This oper-
ation, called an eviction, has a nearly constant cost c2.

Usually, c2 is much higher than c1 because data transfer
between different levels of the memory hierarchy is much
more expensive than simple checks within the cache.

The total cost of query processing thus depends on the
number of collisions incurred, which is determined by the
number of groups of the data and collision rate of the hash
table. The number of groups depends on the nature of the
data. The collision rate depends on the hash function, size
of the hash table, and the data distribution. Generally speak-
ing, a well designed hash function with a large size (within
space and peak load constraints, as we will discuss more
later) reduces the total cost.

2 In the rest of the article, we use “epoch” and “time window” inter-
changeably.

4

2.4 Processing Multiple Aggregations Naively

Given the above method of processing a single aggregate
query based in GS, we now examine the problem of evalu-
ating multiple aggregate queries. Up to Section 6, we will
focus on queries that only differ in their grouping attributes.
We discuss how to handle queries that also differ in the
length of the time window in Section 7.

Suppose the user issues the following three queries:
Q1: select tb, SourceIP, count(*) as cnt

from IPPackets
group by time/5 as tb, SourceIP

Q2: select tb, DestinationIP, count(*) as cnt
from IPPackets
group by time/5 as tb, DestinationIP

Q3: select tb, DestinationPort, count(*) as cnt
from IPPackets
group by time/5 as tb, DestinationPort

For simplicity, we will use R to denote the relation of the
data stream tuples and A, B, C, D, etc, for R’s attributes in
the remainder. The above queries are re-written as follow:
Q1: select tb, A, count(*) as cnt

from R
group by time/5 as tb, A

Q2: select tb, B, count(*) as cnt
from R
group by time/5 as tb, B

Q3: select tb, C, count(*) as cnt
from R
group by time/5 as tb, C

A naive method is to process each query separately using
the aforementioned single aggregate query processing algo-
rithm. Specifically, we maintain, in ML, three hash tables for
A, B, and C separately as shown in Figure 2(a). For each in-
coming tuple, we need to probe each hash table, and if there
is a collision, some entry gets evicted to MH .

C

2

c 1

c 1

c 1

MH

ML

LFTAs

HFTAs

B

A

c

(a) Naive method

LFTAs

H

ML

c 2

ABC

A

B

C

c 1

c 1

c 1

c 1

HFTAsM

(b) Using phantoms

Fig. 2 Processing multiple aggregations

2.5 Processing Multiple Aggregations Using Phantoms

Since we are processing multiple aggregate queries, we may
be able to share the computation that is common to some
queries and thereby reduce the overall processing cost. For
example, we can additionally maintain a hash table for the
relation ABC in ML as shown in Figure 2(b). The queries on
A, B and C are processed as follows. When a new tuple ar-
rives, we hash it on the combined attributes, ABC, and main-
tain the groups and counts of ABC in its hash table. Suppose
the new tuple hashes to entry bk1 in hash table ABC (we will
refer to the hash table for a relation R simply as “hash table
R” in the remainder and we may omit “hash table” when the
context is clear). If the new tuple belongs to the same group
as the existing group in bk1, then we simply increase bk1’s
count by one; otherwise, we evict the existing entry to the
three hash tables A, B and C and put the new group in bk1
with count one. At this moment, the entry evicted from ABC
is like a new tuple arriving at A, B and C, individually. Then
we process the evicted entry on each of A, B and C as in the
single query case.

The intuition of using phantoms is that, when a new tu-
ple arrives, instead of probing three hash tables A, B and
C, we only probe one hash table, that is, ABC. The probes
on A, B and C are delayed until the point when an entry is
evicted from ABC (that is, a collision happens in ABC). Be-
cause network data usually exhibits clusteredness, that is, all
packets in a flow have the same source/destination IP/port,
the likelihood of a collision is low until many packets have
been observed. Therefore, maintaining ABC may reduce the
overall cost.

Since the aggregate queries of A, B and C are derived
from ABC, we say that ABC feeds A, B and C. Although
ABC is not of interest to the user, it may help reduce the
overall processing cost. We call such a relation a phantom.
While for A, B and C, whose aggregate information is of
users’ interest, we call each of them a query. Both queries
and phantoms are relations.

We use the example in Figure 2 to illustrate how the
maintenance of a phantom can benefit the total evaluation
cost. For simplicity, suppose A, B and C have the same colli-
sion rate. Without the phantom, let their collision rate be x1;
with the phantom, let their collision rate be x′1. In general,
the larger the hash table, the smaller the collision rate. Since
the hash table size of A, B and C is smaller in the presence
of the phantom, x′1 is larger than x1. Let the collision rate of
ABC be x2.

Consider the cost for processing n tuples. Without the
phantom, we need to probe three hash tables for each in-
coming tuple, and there are x1n evictions from each table.
Therefore the total cost is:

E1 = 3nc1 +3x1nc2 (1)

5

With the phantom, we probe only ABC for each incoming
tuple and there would be x2n evictions. For each of these
evictions, we probe A, B and C, and hence there are x′1x2n
evictions from each of them. The total cost is:

E2 = nc1 +3x2nc1 +3x′1x2nc2 (2)

The difference of E1 and E2 is:

E1−E2 = [(2−3x2)c1 +3(x1− x′1x2)c2]n (3)

If x2 is small enough so that both (2−3x2) and (x1− x′1x2)
are larger than 0, then E2 will be smaller than E1, and there-
fore maintenance of the phantom benefits the total cost. If x2
is not small enough so that one of (2−3x2) and (x1− x′1x2)
is larger than 0 but the other is less than 0, then E1−E2 de-
pends on the relationship of c1 and c2. If x2 is so large that
both (2−3x2) and (x1−x′1x2) are less than 0, then the main-
tenance of the phantom increases the cost and therefore we
should not maintain it. Here, we omitted the EE update cost.
We will give a thorough cost analysis in Section 3.2.

2.6 Choice of Phantoms

In general, we may maintain multiple phantoms and multi-
ple levels of phantoms. Figure 3 shows three possible ways
of maintaining phantoms for the set of queries AB, BC, BD

AB BC BD CD

ABC

AB BC BD CD

BCD

AB BC BD CD

ABCD

BCD

(a) (b) (c)

Fig. 3 Choices of phantoms

and CD. It is easy to prove that a phantom that feeds less
than two relations is never beneficial. So by combining two
or more queries, we can obtain all possible phantoms and
plot them in a relation feeding graph as shown in Figure 4.
Each node in the graph is a relation and each directed edge

BC BD CD

ABC ABD BCD

ABCD

AB

Fig. 4 Relation feeding graph

shows a feed relationship between two nodes. The feed re-
lationship can be “short circuited”, that is, a node can be di-
rectly fed by any of its ancestors in the graph. For example,

AB could be fed directly by ABCD without having ABC or
ABD maintained.

Given a set of user queries and the relation feeding graph,
an optimization problem is to identify the phantoms that we
should maintain to minimize the cost. Another optimization
problem is, given a set of phantoms and queries, how to allo-
cate hash table space for them to minimize the overall cost.

3 Problem Formulation

In this section, we formulate our cost model, and give a
formal definition of our optimization problem. We present
hardness results, motivating the greedy heuristic algorithms
for identifying optimal configurations. We end this section
with a synopsis of our proposed solution.

3.1 Terminology, Notation and Assumptions

When we have chosen a set of phantoms to maintain in ML,
we call the set of maintained relations (that is, the chosen
phantoms and user queries) together with the feeding rela-
tionship as a configuration. For example, Figure 3 shows
three possible configurations for the example query set, {AB,
BC, BD, CD}. While a feeding graph is a DAG, a configura-
tion is always a tree, consistent with the path structure of the
feeding graph. If a relation in a configuration is directly fed
by the stream, we call it a raw relation. For example, ABC,
BD, CD are raw relations in Figure 3(a); and ABCD is the
only raw relation in Figure 3(c). If a relation in a configu-
ration has no child, then it is called a leaf relation or just a
leaf. For all the configurations in Figure 3, queries AB, BC,
BD and CD are leaf relations. Leaf relations may also be raw
relations. For example, BD and CD are both raw and leaf re-
lations in Figure 3(a). We adopt the following way to specify
a configuration. “AB(A B)” is used to denote a phantom AB
feeding queries A and B. We use this notation recursively.
For example, the configuration in Figure 3(c) is expressed
as ABCD(AB BCD(BC BD CD)).

We next develop our cost model, which determines the
total cost incurred during data stream processing for a given
configuration. We then formalize the optimization problem.
Commonly used symbols are summarized in Table 1.

3.2 Cost Model

Recall that aggregate queries usually include a specification
of temporal epochs of interest. For example, in the query
“for every destination IP, destination port and 5 minute in-
terval, report the average packet length”, the “5 minute in-
terval” is the epoch of interest. During stream processing
within an epoch, the aggregate query hash tables need to

6

Table 1 Symbols

Symbol Meaning
AR The set of ancestors of relation R in a configuration
bk A bucket in a hash table
b The number of bucket of the hash table
Bk The number of buckets that k groups hash to
Bi Occupancy numbers
c Some constant denoting certain cost
e Per tuple cost
E Overall cost
Em Intra-epoch cost
Ee End-of-epoch cost
f Number of relations a phantom feed (the fanout)
FR The number of tuples fed to relation R
gi The number of groups of relation i for an epoch
I A configuration
k The number of groups hashing to a hash table bucket
la Average length of network flows
L The set of leaf relations in a configuration
M Memory constraint in LFTA
MR The size of the hash table for relation R
ne The number of stream tuples observed in an epoch
nQ The number of queries
Q A query
R A relation
S A set
T The time duration of an epoch
W The set of all raw relations
x Collision rate
φ A user defined ratio used in space allocation of the GP

algorithm (see Section 4.1)

be maintained, for each tuple in the stream. At the end of
an epoch, all the hash tables of the user queries at ML are
evicted to MH to complete the user query computations. Thus,
there are two components to the cost: intra-epoch (IE) cost,
and end-of-epoch (EE) cost. We discuss each of these next.

3.2.1 Intra-Epoch (IE) Cost

In an epoch T , maintaining (the hash tables of) the relations
in a configuration starts with updating all raw relations when
a new tuple in the stream arrives. If and only if there are col-
lisions in the raw relations, the relations they feed take the
evicted entries as input and are updated. This process re-
curses until the leaf relations. If there are collisions in the
leaf relations, the corresponding entries are evicted to MH .
We call an eviction between two relations in ML an internal
eviction and an eviction from ML to MH an external eviction.
As described in Section 2.3, there are mainly two types of
operations that contribute to the cost of the above process:
probe and eviction. In case of a single query, there is no in-
ternal eviction. The evictions we talked about in Section 2.3
are actually external evictions, at a cost of c2 each. An in-
ternal eviction incurs probes to descendent relations, which
cause c1 costs in the descendent relations.

The maintenance cost Em for a configuration during an
epoch T can be formulated as follows.

Em = ∑
R∈I

FRc1 + ∑
R∈L

FRxRc2 (4)

where I is a configuration, L is the set of all leaf relations in
I, xR is the collision rate of the hash table R and FR is the
number of tuples fed to R; FR is derived as follows.

FR =
{

ne if R ∈W
Fpxp else

(5)

where W is the set of all raw relations, ne is the number of
tuples observed in T , Fp is the number of tuples fed to the
parent of R in I, and xp is the collision rate of the hash table
for the parent of R in I. If we further define that Fp := ne and
xp := 1 when R is a raw relation, Equation 4 can be rewritten
as follows.

Em =

[
∑
R∈I

(∏
R′∈AR

xR′)c1 + ∑
R∈L

(∏
R′∈AR

xR′)xRc2

]
ne (6)

where AR is the set of all ancestors of R in I.
As ne is determined by the data stream but not affected

by the configuration, we only need to focus on the per tuple
maintenance cost for a given configuration

em = ∑
R∈I

(∏
R′∈AR

xR′)c1 + ∑
R∈L

(∏
R′∈AR

xR′)xRc2 (7)

In this equation, c1 and c2 are constants determined by the
LFTA/HFTA architecture of the DSMS. Therefore, em is de-
termined by the feeding relationship and collision rates of
the hash tables.

3.2.2 End-of-Epoch (EE) Cost

At the end of every epoch, we perform the EE update as
follows. From the raw level to the leaf level of the config-
uration, we scan (the hash table of) each relation and evict
each entry of the relation to the child relations it feeds. Fi-
nally, we scan the leaf relations and evict each item in them
to MH . We refer to the process of evicting all entries in a
relation R(’s hash table) and performing corresponding up-
dates on R’s descendants as a hash table eviction on R or
to evict a hash table R. We may also say to evict a relation
R, which actually means to evict the hash table of the rela-
tion. The EE update consists of hash table evictions of all
relations in a configuration in a top-down fashion. Using an
analysis similar to the IE cost analysis, taking the possibili-
ties of collisions during this phase into account, the EE cost
Ee can be expressed as follows.

Ee = ∑
R∈I,R 6∈W

[∑
R′∈AR

(MR′ ∏
R′′∈AR−(AR′∪R′)

xR′′)]c1+

∑
R∈L

[MR + ∑
R′∈AR

(MR′ ∏
R′′∈(AR∪R)−(AR′∪R′)

xR′′)]c2 (8)

where MR is the size of the hash table of relation R.

7

3.2.3 Overall Cost and Peak Load Constraint

Our final aim is to reduce the overall cost E, which is the
sum of the IE cost Em and the EE cost Ee. Em is highly de-
pendent on ne; the larger the ne the larger the Em. Ee mainly
depends on the total size of the hash tables in ML, which is
determined by the fixed memory constraint. Hence, Ee is rel-
atively stable for an epoch irrespective of the configuration.
Typically, T is several minutes and ne is very large (over
800 thousand per minute in our collected data). Em is much
larger than Ee in our experiments even when Em is mini-
mized. Therefore, we will focus on minimizing Em for now.
When we consider queries of different time window lengths
in Section 7, the phantoms may have much more frequent
hash table evictions. We will then take Ee into account in
the overall cost.

Ee may not be the major cost, however, it produces a
workload peak since all the hash tables in ML must be evicted
in a very short period of time at the end of an epoch. This
workload peak must be smaller than a limit, the peak load
constraint Ep, to avoid any data loss. Therefore, when we
minimize Em, we should guarantee that Ee ≤ Ep.

3.3 Problem Definition

Based on the discussion in the previous subsection, we for-
malize the multiple aggregation (MA) problem as follows.

Consider a set of aggregate queries over a data stream,
SQ = {Q1, Q2, ...,QnQ}, and a memory constraint M in ML.
Determine the configuration I, of relations in the feeding
graph of SQ to maintain in ML and also the allocation of
the available memory M to the hash tables of the relations
so that the overall cost E for answering all the queries is
minimized, subject to the peak load constraint Ee ≤ Ep.

The MA problem consists of two sub-problems: phan-
tom choosing and space allocation. For any given configu-
ration, there exists a space allocation that has the minimum
E. In Section 6, we will show how to allocate the space in
order to achieve the minimum E. For now, we assume that
we have a function to return the minimum E given a configu-
ration as the input. We can prove that the phantom choosing
problem is NP-complete from a reduction of the set cover
problem and further, we have the following theorem:

Theorem 1 Let n be the number of possible group-by queries
in the feeding graph of SQ. If P 6= NP, for every ε > 0 every
polynomial time ε-approximation algorithm for the phan-
tom choosing problem has a performance ratio of at least
n1−ε .

Given the hardness result, we turn to heuristics (particu-
larly, greedy algorithms) for the phantom choosing problem.
A synopsis of our proposed techniques is given next.

GS has queries with tumbling windows of lengths vary-
ing from several seconds to several minutes. The MA prob-
lem needs to be solved in almost real time at the beginning
of each tumbling window to fix the configuration and then
GS can start receiving records. Therefore, a highly efficient
algorithm is needed for our application. When a new query
joins, it waits until the beginning of the next tumbling win-
dow to start being processed together with the other queries.
The short wait (typically several minutes) is usually not a
problem in practice.

3.4 Synopsis of Our Proposal

The MA problem has similarities to the view materialization
(VM) problem [23]. They both have a feeding graph consist-
ing of nodes some of which can feed some others, and we
need to choose some of them to maintain. So one possibil-
ity is to adapt the greedy algorithm developed for VM to
MA. However, there are two differences between these two
problems. First, maintenance of any of the views in VM al-
ways adds to the benefit, while in MA, maintenance of a
phantom is not always beneficial. Second, the space needed
for maintenance of a view is fixed but the hash table size
is flexible. Therefore, in order to adapt the VM greedy al-
gorithm, we need to have a space allocation scheme that
fixes the hash table size and at the same time guarantees a
low collision rate of the hash table to make each maintained
phantom beneficial. This adapted approach, called greedy by
increasing space, is discussed in Section 4.1. The greedy-
by-increasing-space approach has several drawbacks. First,
it cannot apply the optimal space allocation scheme as we
will described in Section 6. Second, it depends on a good
choice of a parameter (φ as defined later) to yield good per-
formance, but a good value for the parameter is hard to de-
termine in practice. Therefore we propose a new approach,
called greedy by increasing collision rates, in Section 4.2.
In this approach, we add the phantoms one by one in a cost
greedy fashion to the configuration, and we always allocate
all the available space to all relations in a configuration dur-
ing the process of choosing phantoms. Initially, when there
is a small number of relations in the configuration, the col-
lision rates are low and hence adding phantoms reduces the
cost. As more and more phantoms are added, the hash table
sizes become smaller and collision rates become higher. The
algorithm stops when no phantom candidate can be added
with a reduction to the cost. This strategy does not need any
tuning parameter, and is amenable to an optimal space allo-
cation scheme.

In summary, our proposed technique, called SMAP (Stream-
ing Multiple Aggregations using Phantoms), consists of an
intelligent phantom choosing algorithm (presented in Sec-
tion 4) and an effective space allocation scheme (presented
in Section 6). Together, they minimize the overall cost. The

8

space allocation scheme requires an accurate model to esti-
mate collision rates, investigated closely in Section 5.

4 Phantom Choosing

In this section, we present two phantom choosing strategies,
both being greedy algorithms. The greedy-by-increasing-space
approach is adapted from the algorithm for the VM problem
[23]. The greedy-by-increasing-collision-rates approach is
our proposed algorithm.

4.1 Greedy by Increasing Space

To adapt the greedy algorithm for the VM problem, we need
to have a space allocation scheme that fixes the hash table
size and at the same time guarantees a low collision rate
of the hash table to make each maintained phantom benefi-
cial. Generally, the more space allocated to a hash table, the
lower the collision rate. On the other hand, the more groups
a relation has for a fixed sized hash table, the higher is the
collision rate. Let g be the number of groups of a relation
and b be the number of buckets in a hash table. A straight-
forward way of allocating hash table space to a relation is in
proportion to the number of groups in the table so as to make
all the hash tables have similar collision rates. Specifically,
we can allocate space φg for a relation with g groups, where
φ is a constant chosen by the user and can be tuned. We set
it large so that the hash table is guaranteed to have a low
collision rate. We will develop a model to estimate collision
rates in Section 5. We can then have a better sense of what
value of φ might be good according to the analysis there.

We need to know the number of groups of the relations
for the coming epoch in order to allocate space to them. It
is reasonable to assume that the data distribution does not
change dramatically in a very short time. Hence, we main-
tain the number of groups of all the relations in the feeding
graph in a tumbling window fashion and the previous win-
dow’s number of groups of a relation is used to estimate the
number of groups of the relation in the coming epoch. The
numbers of groups can be maintained efficiently by a com-
bination of sampling and sketching techniques [1].

Figure 5 shows the greedy algorithm by increasing space,
named GP (not “GS” in order to avoid confusion with the
GS data stream system). GP runs as follows. Initially, the
configuration I only contains the queries, which must be
maintained in ML. For each candidate phantom in the candi-
date set SC, we calculate its benefit (the difference between
the costs of the configurations with and without this phan-
tom) according to the cost model. Then we divide the benefit
by relation R’s number of groups R.g, to get the benefit per
unit space for R. In the algorithm, M denotes the size of the
remaining memory and β denotes the benefit per unit space.

Algorithm GP
1 choose a φ value;
2 I ← SQ; SC ←{R ∈ relations in the f eeding graph∧R /∈ SQ};
3 M ←M− ∑

R∈SQ

φR.g

4 Rm ← 1
5 while M > 0 && SC 6= /0 && Rm 6= NULL
6 β ←−∞, Rm ← NULL
7 for each R ∈ SC
8 if M > φR.g && (cost(I)− cost(R∪ I))/(φR.g) > β
9 β ← (cost(I)− cost(R∪ I))/(φR.g)
10 Rm ← R
11 if Rm 6= NULL
12 I ← Rm∪ I
13 SC ← SC−Rm
14 M ←M −φRm.g
15 return I
End GP

Fig. 5 Algorithm GP

We always choose the phantom with the largest benefit per
unit space to be added to I. This process continues until ei-
ther the space is exhausted, or all candidate phantoms are
added to I. When the algorithm stops, I contains the rela-
tions we should maintain.

This approach has two drawbacks: (i) Parameter φ needs
to be tuned to find the best performance, but in practice, a
good choice is very hard to achieve. (ii) By allocating space
to a relation proportional to the number of its groups, we
make the collision rates of all the relations the same. As we
shall show later, this is not a good strategy.

4.2 Greedy by Increasing Collision Rates

We propose a different greedy algorithm for space alloca-
tion. Instead of allocating a fixed amount of space to each
phantom progressively, we always allocate all available space
to the current configuration (how to allocate space among re-
lations in a configuration is analyzed in Section 6). As each
new phantom is added to a configuration, what changes is
not the total space used, but the collision rates of hash tables.
The collision rates increase as more phantoms are added.

Figure 6 shows the greedy algorithm by increasing col-
lision rates, named GC, which runs as follows. At first, the
configuration I only contains all the queries. For each candi-
date phantom in the candidate set SC, we calculate its benefit
(the difference between the costs of the configurations with
and with out this phantom) according to the cost model, but
different from algorithm GP which allocates φR.g space,
here we allocate space according to the scheme devised in
Section 6. We always choose the phantom with the largest
benefit to be added to I. Note that here we do not use bene-
fit per unit space as the phantom choosing criterion because
the effect of the space used by the phantom is already re-
flected by the cost. If the phantom needs too much space, it

9

Algorithm GC
1 I ← SQ; SC ←{R ∈ relations in the f eeding graph∧R /∈ SQ}
2 β ← 1
3 while β > 0 && SC 6= /0
4 β ← 0, Rm ← NULL
5 for each R ∈ SC
6 if cost(I)− cost(R∪ I) > β
7 β ← cost(I)− cost(R∪ I)
8 Rm ← R
9 if β > 0
10 I ← Rm∪ I
11 SC ← SC−Rm
12 return I
End GC

Fig. 6 Algorithm GC

would reduce the space that other relations have and hence
has a negative effect on the overall cost. This process contin-
ues until no remaining phantom produces a positive benefit,
or all phantoms are maintained. When the algorithm termi-
nates, I contains the relations we should maintain.

A prerequisite of this algorithm is an accurate model to
estimate collision rates. We derive such a model next.

5 The Collision Rate Model

In this section, we develop a model to estimate the collision
rate. We assume that the hash function randomly hashes the
data, so each hash value is equally possible for every tuple.
We first consider uniformly distributed data, and then take
clusteredness of data into account.

5.1 Randomly Distributed Data

Let g be the number of groups of a relation and b the num-
ber of buckets in the hash table. We say that a bucket has k
groups if k groups hash to the bucket. Let Bk be the num-
ber of buckets having k groups. If the tuples in the stream
are uniformly distributed, each group has the same expected
number of tuples, denoted by nrg. Then nrgk tuples will go
to a bucket having k groups. Under the random hashing as-
sumption, the collision rate in this bucket is (1−1/k). There-
fore nrgk(1−1/k) collisions happen in this bucket. The col-
lision rate is obtained by summing all the collisions and then
dividing the sum by the total number of tuples as follows.

x =

g

∑
k=2

Bknrgk(1−1/k)

gnrg
=

g

∑
k=2

Bk(k−1)

g
(9)

Here k values start from 2 because when 0 or 1 group
hashes to a bucket, no collision happens. In order to compute
x, we still need to know Bk. Deriving Bk concerns a class of

problems called the occupancy problem; Bk can be estimated
by the “multinomial allocations” model [5] (Chapter 6.2).
We sketch the derivation below. The probability of k groups
out of g hashed to a given bucket is
(

g
k

)
(1/b)k(1−1/b)g−k (10)

This holds for any bucket, which means that each bucket
has the chance of Equation 10 to have k groups. If we as-
sume that all b buckets are independent of each other, then
statistically there are

b
(

g
k

)
(1/b)k(1−1/b)g−k (11)

buckets each of which has k groups. Substitute Equation 11
for Bk in Equation 9 we have

x =

b
g

∑
k=2

(
g
k

)
(1/b)k(1−1/b)g−k(k−1)

g
(12)

Equation 12 can be further simplified to the following
equation.

x = 1− b
g

+
b
g
(1− 1

b
)g (13)

Our experiments on both synthetic and real data show
that the actual distribution of Bk matches Equation 13 well,
even though the buckets are not completely independent of
each other (they must satisfy the equation ∑b

k=1 Bk = b).

5.2 Validation of Collision Rate Model

We have measured experimentally the collision rates on both
synthetic random data sets and real data sets. The results on
the synthetic and real data sets are shown in Figure 7 and
Figure 8, respectively.

The real data sets are extracted from the TCP data set
as described in Section 8.1. We have assumed independent
data distribution for the above analysis, while the TCP data
set has a lot of clusteredness due to multiple packets in a
flow. In order to validate our analysis using the real data, we
grouped all packets of a flow into a single tuple, eliminat-
ing the effect of clusteredness (We consider clusteredness
in the next subsection). After eliminating clusteredness of
the data, we extracted 4 data sets which have 1, 2, 3 and 4
attributes respectively. The number of groups in these data
sets are 552, 1846, 2117, 2837 respectively. For the synthetic
data sets, we generated data sets which have 500, 1000, and
2000 groups respectively. All multi-attribute random data
sets have the same data distribution and hence the collision
rates are the same as a one-attribute random data set. There-
fore, we do not specify number of attributes in Figure 7. The

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

co
lli

si
on

 r
at

e

g/b

estimated
random data, g=500

random data, g=1000
random data, g=2000

Fig. 7 Collision rates of random data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

co
lli

si
on

 r
at

e

g/b

estimated
real data, 1 attribute

real data, 2 attributes
real data, 3 attributes
real data, 4 attributes

Fig. 8 Collision rates of real data

estimated curve is plotted according to Equation 13. As we
can see, the observed collision rates of both the random and
the real data match the estimated collision rate very well. In
all the observed collision rates, more than 95% of the exper-
imental results have less than 5% difference from the esti-
mated collision rates. These results validate the accuracy of
the collision rate model on randomly distributed data.

5.3 Clustered Data

Real data streams, especially the packets in TCP header data,
exhibit strong clusteredness. The packets in the same traffic
flow have exactly the same values for attributes such as
source/destination IP/port. To analyze collision rates for such
clustered distributions, we should consider what happens at
the per flow level. If we ignore the fact that flows may inter-
leave, and assume that packets in a flow go through a bucket
without any collision until the end of the flow, then we can
think of each flow as one tuple and use the same formula as
in the random distribution (Equation 9) to calculate the total
number of collisions as follows:

nc =
g

∑
k=2

Bkn f gk(1−1/k) (14)

where n f g is the number of flows in each group; Bk is still
calculated by Equation 11. To obtain the collision rate, we
divide nc by the total number of tuples, gn f gla, where la is
the average length of all the flows. Then we have the colli-
sion rate for the data with a clustered distribution as follows.

x =

b
g

∑
k=2

(
g
k

)
(1/b)k(1−1/b)g−k(k−1)

gla

= (1− b
g

+
b
g
(1− 1

b
)g)/la (15)

The difference of the collision rate for clustered data from
that for random data is a linear relationship over la. The col-
lision rate model for random data is a special case of that for
clustered data with la = 1.

We have assumed that flows do not interleave each other
in the above derivation, but in reality they do interleave.
Here, we can think of la as the “effective” average flow
length rather than the “real” average flow length. This pa-
rameter captures the effect of both the flow length and the
interleaving of flows at the same time, which is just what we
actually need to estimate collision rates for clustered data.
Therefore, interleaving of flows is not a problem because
its effect is captured together with flow lengths by la. Next,
we provide experimental results to validate the collision rate
model in Equation 15.

We have done the following experiments. We let real
data sets (with clusteredness) actually run through hash ta-
bles of a configuration and record the number of collisions
of a relation, so that we can compute the actual collision
rate, denoted by xa, for each relation. Then we divide the
collision rate computed using Equation 13 by xa to obtain
the measured average flow length, lm. Figure 9 shows lm of
different relations in the configuration ABCD(AB BCD(BC

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8 9 10

av
er

ag
e

flo
w

 le
ng

th

g/b

ABCD

(a) Raw relation

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7 8 9 10

av
er

ag
e

flo
w

 le
ng

th

g/b

AB
BCD

BC
BD
CD

(b) Non-raw relation

Fig. 9 Measured average flow length, ABCD(AB BCD(BC BD CD))

BD CD)) as a function of g/b. The raw relation ABCD has
an lm in the range of 20 to 80, while the other relations have
lm in the range of 1 to 8. The reason is that the raw relation
“absorbs” most of the clusteredness, and there is not much
clusteredness remaining to lower levels of relations. If we
define raw relation as depth 1 in the configuration tree, then
AB and BCD are depth 2 relations, and BC, BD and CD are
depth 3 relations. We can also observe that relations of the
same depth have very similar lm. Relations of depth greater

11

than or equal to 3 have lm close to 1. Another observation
is that lm decreases as g/b increases. This is because when
b gets smaller (which makes g/b larger), it gets more likely
that two flows hash to the same bucket and hence interleave,
which makes the effective average flow length smaller. For
relations with small lm, their lm decreases less because a
small lm means the flows are interleaved heavily already,
and interleaving them more will not reduce lm much. Tests
on many other configurations have shown very similar be-
havior. Figure 10 shows the result of another configuration
ABCD(AB(A B) CD(C D)).

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8 9 10

av
er

ag
e

flo
w

 le
ng

th

g/b

ABCD

(a) Raw relation

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7 8 9 10

av
er

ag
e

flo
w

 le
ng

th

g/b

AB
A
B

CD
C
D

(b) Non-raw relation

Fig. 10 Measured average flow length, ABCD(AB(A B) CD(C D))

Based on the above observations, we use the follow-
ing method to obtain la. We measure lm for each relation
in each time window. The average lm of all the relations
of depth i (i = 1,2,3, ...) in the previous time window is
used as an estimate of la for the relation of depth i in the
current time window. Then we use Equation 15 to estimate
the collision rates of the relations for the current time win-
dow. Figure 11 shows the results of four representative rela-

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 1 2 3 4 5 6 7 8 9 10

co
lli

si
on

 r
at

e

g/b

actual
estimated

(a) ABCD, depth 1

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 1 2 3 4 5 6 7 8 9 10

co
lli

si
on

 r
at

e

g/b

actual
estimated

(b) AB, depth 1

 0

 0.1

 0.2

 0.3

 0.4

 0 1 2 3 4 5 6 7 8 9 10

co
lli

si
on

 r
at

e

g/b

actual
estimated

(c) BCD, depth 2

 0

 0.1

 0.2

 0.3

 0.4

 0 1 2 3 4 5 6 7 8 9 10

co
lli

si
on

 r
at

e

g/b

actual
estimated

(d) CD, depth 3

Fig. 11 Collision rates of clustered data

tions with various depths. Overall, our collision rate model
provides reasonably accurate results. The accuracy is espe-
cially high (relative errors mostly within 10%) in the low
collision rate parts, which are the cases occurring in opti-
mal configurations. For the parts with higher collision rates,
the accuracy gets worse. However, the errors are still within

80%, which is acceptable given the hard-to-predict nature of
data stream distributions. The experimental study presented
later shows that our algorithm using the above collision rate
model achieves significant performance gain in practical set-
tings despite the estimation errors.

5.4 Approximating the Low Collision Rate Part

We can plot the collision rate model for random data (Equa-
tion 13) as a function of g/b, which is shown in in Fig-
ure 12(a). According to our previous analysis, the hash table
must have a low collision rate if we want to benefit from
maintaining phantoms, so we examine the low collision rate
part of this curve closely. A zoom-in of the collision rate
curve when collision rate is smaller than 0.4 as well as a
linear regression of this part is shown in Figure 12(b). We

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

co
lli

si
on

 r
at

e

g/b
(a) Whole curve

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1

co
lli

si
on

 r
at

e

g/b

Actual collision rate
Regression

(b) The low collision rate part

Fig. 12 The collision rate curve

observe that this part of the curve is almost a straight line
and the linear regression achieves an average error less than
5%. The linear function for this part is

x = 0.0267+0.354 · (g/b)

For clustered data,

x = 0.0267/la +0.354 ·g/(la ·b) (16)

Expressing this part of the collision rate linearly is important
for the space allocation analysis as we will see in the next
section.

6 Space allocation

In this section, we investigate the problem of space alloca-
tion, that is, given a configuration, how to allocate the avail-
able space M to the relations in the configuration so that the
overall cost is minimized. We start with a simple two-level
configuration, and then identify the difficulties in analyzing
more complex configurations. Given that, we finally discuss
heuristics for space allocation.

12

6.1 A Case of Two Levels

Consider the case when there is only one phantom R0 and
it feeds all f queries, R1, R2, . . . , R f . Let x0 be the colli-
sion rate of the phantom, and x1, x2, . . . , x f be the colli-
sion rates of the queries. In order to benefit from maintain-
ing a phantom, its collision rate must be low. Therefore we
only care about the low collision rate part of the collision
rate curve. According to Section 5.4, this part of the curve
can be expressed as a linear function x = α + µg/(la · b),
where α = 0.0267/la and µ=0.354.3 Since α is small, here
we make a further approximation to let x = µg/(la · b). We
will discuss later how the results are affected when we con-
sider α . Both g and la are known constants for each relation,
therefore we set the value of g to g/la to simplify the sym-
bols in our derivation, and we should recall that g is actually
g/la in the end of the derivation. Given the approximation
and simplified notation, xi = µgi/bi, i = 0,1, ..., f . The total
size is M, so M = ∑ f

i=0 bi. The cost of this configuration is

e = c1 + f x0c1 + x0

f

∑
i=1

xic2 = f µ
g0

b0
c1 + µ

g0

b0

f

∑
i=1

µ
gi

bi
c2 + c1

= µ
g0

b0
(f c1 + µc2

f

∑
i=1

gi

bi
)+ c1

=
µg0

M−
f

∑
i=1

bi

(f c1 + µc2

f

∑
i=1

gi

bi
)+ c1 (17)

The cost e is a function of multiple variables, b1,b2, ...,b f .
To find out the minimum, we equate the partial derivatives
of e to 0. We calculate the partial derivative of e over bi,
i = 1,2, ... f , as follows.

∂e
∂bi

=
µg0

(M−
f

∑
i=1

bi)2

(f c1 + µc2

f

∑
i=1

gi

bi
)− µg0

M−
f

∑
i=1

bi

µc2gi(
1
b2

i
)

Let ∂ e
∂bi

= 0, then

µg0

M−
f

∑
i=1

bi

f c1 + µc2

f

∑
i=1

gi

bi

M−
f

∑
i=1

bi

− µc2gi

b2
i

= 0

3 Actually, even if the collision rate for the optimal allocation is a
little higher than 0.4, we can still use linear regression for that part; the
values of α and µ would be a little different, but experiments show that
small variations in their values do not affect the result much.

µg0

M−∑ f
i=1 bi

is non-zero, so

f c1 + µc2

f

∑
i=1

gi

bi

M−
f

∑
i=1

bi

=
µc2gi

b2
i

(18)

for i = 1,2, ..., f .
Observe that left hand side of the equation is the same

for any i. So we have

g1

b2
1

=
g2

b2
2

= ... =
g f

b2
f

(19)

that is, bi is proportional to
√

gi.

Let bi =
√

gi
ν

, i = 1,2, ... f . Substituting this for bi in
Equation 18, we have

µc2Mν2−2µc2

f

∑
i=1

√
giν− f c1 = 0 (20)

This is a quadratic equation over ν . Solving it we have

ν =

µc2

f

∑
i=1

√
gi±

√√√√µ2c2
2(

f

∑
i=1

√
gi)2 + f µc1c2M

µc2M

Since ν > 0, only the one with “+” before the square root
on the numerator is the solution. So

bi =
√

gi

ν
=

µc2M
√

gi

µc2 ∑ f
j=1
√g j +

√
µ2c2

2(∑
f
j=1
√g j)2 + f µc1c2M

(21)

where i = 1,2, ..., f , and

b0 = M−
f

∑
i=1

bi = M−
M

f

∑
j=1

√
g j

f

∑
j=1

√
g j +

√√√√(
f

∑
j=1

√
g j)2 +

f c1M
µc2

(22)

∂e
∂bi

= 0 is a necessary condition of e taking the maximum
or minimum. From the above analysis, we can see that there
is only one solution satisfying the necessary condition. It is
easy to test that a different group of bi values gives larger
e than the e given by the bi values in Equations 21 and
22. Now, to prove that bi values in Equations 21 and 22
give the minimum of e, it is enough to show that the min-
imum does not occur at the boundary of the domain of the
variables b0,b1, ...b f . Variables bi satisfies that 0 < bi < M,
i = 0,1, ..., f and M = ∑ f

i=0 bi. The boundary of the domain
has at least one bi approaching 0 from the right. When any of

13

the bi approaches 0 from the right, e approaches positive in-
finity. Therefore, the minimum does not occur at the bound-
ary of the domain, and hence the bi values in Equations 21
and 22 give the minimum of e. Here, we view bi as real num-
bers, but in reality, they are integers, which may not take the
exact values given by Equations 21 and 22. However, as M
is a very large integer, typically 10,000 to 100,000, bi is usu-
ally of the magnitude of thousands. The fractional parts of
the exact values calculated from Equations 21 and 22 are
negligible (less than 1/1000 of the actual value). As a result,
we can still safely use Equations 21 and 22 to obtain the bi
values to get the minimum e. As tested in the experimental
study, the cost of using this space allocation scheme always
has less than 1% difference from the optimal cost for two-
level configurations.

A key consequence of our analysis is that we should al-
locate space proportional to the square root of g in order to
achieve the minimum cost. Another interesting point is that
b0 (the space allocated to the phantom) always takes more
than half the available space.

6.2 Other Cases

We have performed a similar analysis on cases with more
than two levels of relations. Even a simple case of three-level
configuration results in an equation of order 8. Equations of
order higher than 4 cannot be solved by radicals according
to Galois’ Theory, that is, we do not have a closed form so-
lution for the equation. In addition, because the coefficients
are parameters which can take wide range of values that we
do not know in advance, we cannot determine whether the
equation is solvable in advance. More complex multiple-
level configurations result in even higher order equations
which cannot be solved algebraically. Therefore, we call con-
figurations with three or more levels intractable configura-
tions and propose heuristics to decide space allocation for
them based on the analysis results we have for the two-level
configuration. Accordingly, we call tractable configurations
those for which we have closed-form solutions. Equations
of order higher than 4 can be solved numerically. However,
the equation system may have very high orders and also be
very complicated. It may have multiple solutions, and it is
not guaranteed that the equation system always converges
quickly to solutions. Our application requires a near real-
time response algorithm. Therefore, we do not use numeri-
cal methods in our solution.

We have only considered one two-level case in Section 6.1.
The results of other one- or two-level cases are summarized
as follows.

1. The configuration has no phantom but only leaf rela-
tions, that is, a one-level case. This case has a closed-

form solution. To achieve minimum cost, allocate space
proportional to the square root of the number of groups.

2. The configuration has one phantom, but it does not feed
all queries, that is, some queries are fed from the stream
directly. This is a two-level case, and it results in an
equation of order 6, which is intractable.

3. The configuration has two phantoms, each of which feed
some queries but they do not feed each other. Together
they feed all queries. This is also a two-level case and it
results in an equation of order 8, which is intractable.

In short, only the case with no phantom or the case with one
phantom feeding all queries is tractable. All other cases are
intractable configurations.

6.3 Heuristics

For intractable configurations, we propose heuristics to al-
locate space based on the analysis of the tractable cases and
partial results we can get from the intractable cases. Our ex-
perimental study shows that our proposed heuristics based
on the analysis are very close to optimal and are better than
other heuristics.

In the analysis on the two-level case in Section 6.1, we
observe from Equation 19 that the square of the number of
buckets assigned to a leaf relation, b2

i , should be propor-
tional to the number of groups of that relation, gi. From the
analysis on the three-level case, we observe similar behav-
ior on relations at the same level, that is, b j of relations at
the same level is proportional to

√
g j. However, b2

1 (R1 is a

non-leaf relation) is proportional to dµg1c1 +µg1c2 ∑d
i=1 x1i

(note that µg/b = x), where x1i are the collision rates of ta-
bles for the children of b1; b1 is affected not only by its own
number of groups, but also its children’s. From these ob-
servations, we gain the intuition that the number of buckets
allocated to a relation at the same level should be propor-
tional to the square root of its number of groups; moreover,
a relation that feeds other relations should be allocated more
space according to the number of groups of the relations it
feeds. With this intuition, we propose the following space
allocation scheme (heuristic 1).

Heuristic 1: Supernode with Linear Combination (SL).
We only have the optimal solution for the two-level case,
but not for a general case with more levels of relations in
the configuration. We introduce the concept of supernode so
that we can use the two-level space allocation scheme recur-
sively to solve the general case. Starting from the leaf level,
each relation right above the leaf level together with all its
children is viewed as a supernode. The number of groups
of this supernode is the sum of the number of groups of the
relations that compose this supernode, that is, the phantom
and the queries fed by the phantom. Then we view the su-
pernode as a leaf node and do the above compaction recur-

14

sively until the configuration contains only two levels. For
a two-level configuration, we can allocate space optimally
according to the analysis of Section 6.1. After the first space
allocation, each node (some may be supernodes) is assigned
some space. Then, we decompose each supernode to a two-
level configuration and allocate the space of this supernode
to all nodes optimally inside the supernode again, that is, al-
locate space proportional to the square root of the number
of groups. We do this decomposition recursively until all su-
pernodes are fully unfolded.

Figure 13 shows an example of how heuristic SL works.
Figure 13(a) is a configuration needing space allocation. The
configuration has four queries: A, B, C, D, and three phan-
toms: AB, ABC, ABCD. The number of groups of each rela-
tion is written beside the relation. According to heuristic SL,
relations A, B and AB are first combined into a supernode
AB’, whose number of groups is the sum of the number of
groups of A, B and AB. The first combination results in Fig-
ure 13(b). We still have more than two levels, so we continue
to combine AB’, C and ABC to a supernode, which results
in a the two-level configuration as shown in Figure 13(c).
Now we can allocate space according to the analysis on the
two-level configuration and unfold the supernodes one level
after another until we get back the original configuration.

We also try another heuristic described below (heuristic
2) which is the same as SL except the way we compute the
number of groups of the supernode.

Heuristic 2: Supernode with Square Root Combina-
tion (SR). Since in the two-level case we see that the space
should be proportional to the square root of the number of
groups, we may also let the square root of the number of
groups of the supernode be the sum of the square roots of
the number of groups of all its relations. The other steps are
the same as SL.

Note that both SL and SR give the optimal result for the
case of one phantom feeding all queries. We will also try
two other seemingly straightforward heuristics (heuristics 3
and 4) which are not based on our analysis as a comparison
to the above two more well-founded heuristics.

Heuristic 3: Linear Proportional Allocation (PL). This
heuristic simply allocates space to each relation proportional
to the number of groups of that relation.

Heuristic 4: Square Root Proportional Allocation (PR).
This heuristic allocates space to each relation proportionally
to the square root of the number of groups of that relation.

Although we cannot obtain the optimal solution for space
allocation of general cases through analysis, there does exist
a space allocation which gives the minimum cost for each
configuration. One way to find this optimal space allocation
is to try all possibilities of allocation of space at certain gran-
ularity. For example, suppose the configuration has three re-
lations, AB, A and B, where AB feeds A and B. The total
space is 10. We can first allocate 1 to AB, 1 to A, and 8 to B.

Then we try 1 to AB, 2 to A, and 7 to B, and so on. By com-
paring the cost of all these space allocation choices we will
find the optimal one. We call this method exhaustive space
allocation (ES). Obviously this strategy is too expensive to
be practical, but we use it in our experiments to compara-
tively study the four heuristics.

The space allocation schemes are independent of the phan-
tom choosing strategies, that is, given a configuration, a space
allocation scheme will produce a space allocation no mat-
ter in what order the relations in the configuration are cho-
sen. Therefore, we will evaluate space allocation schemes
and phantom choosing strategies independently in the ex-
perimental study.

6.4 Revisiting Simplifications

From the beginning of the analysis on space allocation, we
have made an approximation on the linear expression of
the collision rate, that is, we let x equal µg/b instead of
α +µg/b. We also did the analysis using x = α +µg/b. The
result of the case with no phantom is the same. The case with
one phantom feeding all queries results in a quartic equation
which can be solved, so we can still get an optimal solution
for this case. However, because solving a quartic equation is
much more complex than a quadratic equation and it is more
involved to decide which solution of the quartic equation is
the one we want, we use the approximated linear expression,
that is, x = µg/b for space allocation in our experiments.
The experimental study shows that even with this approxi-
mation, the results are still very accurate.

We have also tried other alternatives of approximating
Equation 13 such as: (1) (1− 1

b)g ≈ e−
g
b ; (2) taking the first

few terms of the binomial expansion. However, for alterna-
tive (1), the result is an even more complicated equation
system, which is of higher degree and has variables in ex-
ponents. For alternative (2), if we take the first 3 terms of
the binomial expansion, it’s nearly a linear approximation,
but with much worse accuracy; if we take more terms of the
binomial expansion, the result is a much more complicated
equation system than using our linear approximation and the
accuracy is no better than our linear approximation.

Another simplification we have made is on the size of
each hash table bucket in the analysis for ease of exposi-
tion. By using M = ∑bi, we have assumed that a hash table
bucket has the same size for all relations in the ML. Actu-
ally, the size of a hash table entry for different relations can
be different. Suppose we use an int (4 bytes) to represent
each attribute or a counter. Then a bucket for relation A takes
8 bytes and a bucket for ABCD takes 20 bytes. If we denote
the bucket size of relation i as hi, then M = ∑bihi. With this,
the results of the analysis are similar, but instead of allocat-
ing space proportional to

√
g, we should allocate space pro-

15

(b)

A:200 B:150 C:300 D:400

ABC:380

AB:250

ABCD:500

C:300 D:400

ABC:380

ABCD:500

D:400

ABCD:500

AB’:600 ABC’:1280

(a) (c)

Fig. 13 Heuristic SL

portional to
√

gihi. We have used such variable sized buckets
in our implementation for experimental study.

7 Queries of Different Epoch Lengths

In this section, we extend our SMAP technique to multiple
aggregate queries with different epoch lengths. Consider the
following set of queries:

Q1: select tb, A, count(*) as cnt
from R
group by time/2 as tb, A

Q2: select tb, B, count(*) as cnt
from R
group by time/3 as tb, B

Q3: select tb, C, count(*) as cnt
from R
group by time/5 as tb, C

The epoch lengths for A, B, and C are 2, 3, and 5 min-
utes, respectively. To take advantage of phantoms for shar-
ing computation, we have to solve the problem of different
epochs. We can still use the phantom choosing algorithms
presented in Section 4, but need to adapt the cost model and
space allocation scheme to this new problem setting.

Next, we analyze what changes we have to make for the
SMAP technique to work. The possible phantoms and the
relation feeding graph for the aforementioned set of queries
are shown in Figure 14(a). Consider the configuration in Fig-

ABC

A

AC BCAB

CB

ABC

CBA

AB

(a) Relation feeding graph (b) A configuration

Fig. 14 Example

ure 14(b). Hash table A must be evicted every 2 minutes
to answer Q1, which requires hash table AB to be evicted
at least every 2 minutes. Similarly, hash table B (for Q2)
requires hash table AB to be evicted at least every 3 min-
utes. Therefore, hash table AB must be evicted at the end of
timestamps 2, 3, 4, 6, 8, 9, ..., that is, all multiples of 2 and

3. To satisfy the hash table eviction needs of AB and C, hash
table ABC must be evicted at all timestamps when hash ta-
ble AB or C is evicted, that is, all multiples of 2, 3 and 5. In
general, it is not hard to prove the following proposition:

Proposition 1 A relation (’s hash table) needs to be evicted
at timestamps of all multiples of the epoch lengths of all its
descendent leaf relations.

As a result, hash table evictions tend to be more fre-
quent as more queries with different epoch lengths share
phantoms. This causes much higher EE costs which may no
longer be negligible compared to the IE cost (recall that we
have focused on minimizing only the IE cost so far after the
discussion in Section 3.2.3). In addition, the EE costs now
can vary a lot depending on the configuration. Therefore, we
update the cost model presented in Section 3.2 to take into
account the EE cost next.

7.1 Cost Model for Queries of Different Epoch Lengths

Given a configuration, the timestamps for all hash table evic-
tions exhibit a cyclic behavior, the cycle length being the
least common multiple (LCM) of the epoch lengths of all the
leaf relations. For the example of Figure 14 (b), the LCM of
the epoch lengths of all the leaf relations is 30. Within a cy-
cle of 30 minutes, hash tables A, B and C are evicted every
2, 3 and 5 minutes, respectively; hash table AB is evicted at
timestamps 2, 3, 4, 6, ..., 28, 30; hash table ABC is evicted
at timestamps 2, 3, 4, 5, 6, ..., 28, 30. At the end of 30 min-
utes, if we start timestamping from 0 again, the same evic-
tion pattern will happen in the new cycle. For a given set of
queries, different configurations have the same cycle length,
which is determined by the epochs of the queries. Finding
the configuration with the best overall cost over all time is
equivalent to finding the configuration with the best over-
all cost in a cycle. In what follows, we derive the per cycle
overall cost, which consists of the cycle-intra-epoch cost and
cycle-end-of-epoch cost. Let wi be the length of the epoch
for Qi, where 1 ≤ i ≤ nQ, and γ be the length of the cycle.
Then γ = lcm({w1,w2, ...,wnQ}), where lcm() is a function
that returns the LCM of a set of numbers. We summarize the
additional symbols used in this section in Table 2.

16

Table 2 Symbols

Symbol Meaning
DR The set of all descendent relations of R
Ec Overall cost in a cycle
Ecee Cycle-end-of-epoch cost
Ecie Cycle-intra-epoch cost
ER The cost of a hash table eviction on relation R
lcm() A function that returns the LCM of a set of numbers
LR The set of descendent leaf relations of R
nc The number of stream tuples observed in a cycle
nR The number of hash table evictions of R
nRi The number of hash table evictions of Ri
wi The length of the epoch of Qi
γ The length of a cycle

7.1.1 Cycle-Intra-Epoch (CIE) Cost

The intra-epoch cost depends on the feeding relationship,
collision rates and the data stream. It is not affected by the
new problem setting (different epoch lengths). Therefore,
we can still use Equation 7 to obtain the CIE cost as follows.

Ecie = ncem (23)

where nc denotes the number of stream tuples observed in a
cycle. We can estimate nc through the statistics maintained
in the previous time window as discussed in Section 4.1.

7.1.2 Cycle-End-of-Epoch (CEE) Cost

In a cycle, a relation R may perform multiple EE updates,
one at the end of each epoch of R. Every EE update of R
entails a hash table eviction on R. The CEE cost is the sum
of all the hash table eviction costs of all relations in a cycle.

Let LR denote the set of descendent leaf relations of R in
a configuration. According to Proposition 1, every Qi ∈ LR
causes γ/wi hash table evictions on R. To obtain the num-
ber of hash table evictions of R in a cycle, if we just add up
γ/wi for all Qi’s in LR, we will count the hash table evic-
tions at the timestamps of common multiples of wi’s multi-
ple times. Consider a configuration with only two queries,
A with the epoch of 2 and B with the epoch of 3. One
phantom AB feeds A and B; hence the cycle is 6. Relation
A causes AB to evict three times (at timestamps 2, 4 and
6) while B causes AB to evict twice (at timestamps 3 and
6). Simply adding three by two would count AB’s eviction
at timestamp 6 twice. The double-counting happens at the
timestamp of common multiple of 2 and 3, that is, 6. There-
fore, we should subtract the number of common multiples
of 2 and 3 in a cycle (that is, 1) from the sum of three and
two. Then, we obtain the actual number of hash table evic-
tions of AB, 4. We can summarize the above calculation as
γ/wA + γ/wB − γ/lcm(wA,wB), where wA and wB are the
epoch lengths of A and B, respectively.

Further consider the example in Figure 14 (b), which has
the parameters γ = 30,wA = 2,wB = 3,wC = 5. If we use the
above method to calculate the number of hash table evictions

of ABC, we have γ/wA + γ/wB + γ/wC− γ/lcm(wA,wB)−
γ/lcm(wB,wC)−γ/lcm(wA,wC)= 21. But if we actually list
all the timestamps for the hash table evictions of ABC, there
are 22 of them. The miscalculation happens at timestamp
30, which is lcm(wA,wB,wC). We counted it three times by
adding γ/wA,γ/wB,γ/wC and also discounted it three times
by subtracting γ/lcm(wA,wB), γ/lcm(wB,wC), γ/lcm(wA,wC).
Therefore, we should add γ/lcm(wA,wB,wC) back, which
results in 22. This calculation is summarized as γ/wA +γ/wB +
γ/wC−γ/lcm(wA,wB)−γ/lcm(wB,wC)−γ/lcm(wA,wC)+
γ/lcm(wA,wB,wC).

Let nR denote the number of hash table evictions of R
in a cycle. Following the above discussions, it is not hard to
prove that in general

nR = ∑
s⊆LR,s6= /0

(−1)|s|+1 γ
lcm({wi|Qi ∈ s}) (24)

where s denotes a nonempty subset of LR.
Let ER denote the cost of a hash table eviction on relation

R. Using a very similar analysis to that in Section 3.2.1, ER
can be expressed as follows.

ER = ∑
r∈DR

Frc1 + ∑
r∈LR

Frxrc2 (25)

where DR denotes the set of all descendent relations of R, xr
is the collision rate of the hash table r, and Fr is the number
of tuples fed to r when evicting all entries from R; Fr is
derived as follows.

Fr =
{

bR if the parent relation of r is R
Fpxp else

(26)

where bR is the number of buckets of the hash table for rela-
tion R, xp is the collision rate of the hash table for the parent
of r and Fp is the number of tuples fed to the parent of r
during the update process of R. With Equation 26, ER can be
expressed as

ER = bR

[
∑

r∈DR

∏
r′∈Ar−(AR∪R)

xr′c1 + ∑
r∈LR

∏
r′∈(Ar∪r)−(AR∪R)

xr′c2

]

(27)

where AR is the set of all ancestors of R. It is easy to verify
that this equation is also correct when R is a leaf relation.

Now, we can express the CEE cost as follows.

Ecee = ∑
R∈I

nRER

= ∑
R∈I

[
(∑

s⊆LR,s 6= /0
(−1)|s|+1 γ

lcm(s)
)·

bR(∑
r∈DR

∏
r′∈Ar−(AR∪R)

xr′c1 + ∑
r∈LR

∏
r′∈(Ar∪r)−(AR∪R)

xr′c2)
]

(28)

Then the overall cost

Ec = Ecie +Ecee (29)

17

7.2 Space Allocation with the New Cost Model

In this section, we analyze how to allocate space to rela-
tions in order to minimize the overall cost under the new
cost model described in Section 7.1. We still start with a
simple case of two-level configuration.

7.2.1 A Case of Two Levels

Consider the case with only one phantom R0 and it feeds all
f queries, R1, R2, . . . , R f , with epoch lengths of w1, w2, ...,
w f , respectively. Let x0 be the collision rate of the phantom,
x1, x2, . . . , x f be the collision rates of the queries. According
to Equation 23, the CIE cost can be expressed as follows.

Ecie = nc(c1 + f x0c1 + x0

f

∑
i=1

xic2)

= nc

[
µg0

M−∑ f
i=1 bi

(f c1 + µc2

f

∑
i=1

gi

bi
)+ c1

]
(30)

for i = 1,2, ..., f .
According to Equation 28, the cycle-update-cost is

Ecee = nR0(M−
f

∑
i=1

bi)(f c1 +
f

∑
i=1

µ
gi

bi
c2)+

f

∑
i=1

nRi bic2 (31)

where nRi (including nR0) can be obtained from Equation 24.
The overall cost

Ec = Ecie +Ecee

= nc

[
µg0

M−∑ f
i=1 bi

(f c1 + µc2

f

∑
i=1

gi

bi
)+ c1

]

+nR0(M−
f

∑
i=1

bi)(f c1 +
f

∑
i=1

µ
gi

bi
c2)+

f

∑
i=1

nRibic2 (32)

We calculate the partial derivative of Ec over bi, i =
1,2, . . . f ,

∂Ec

∂bi
= nRi c2−

nR0

[
(M−

f

∑
i=1

bi)
µc2gi

b2
i

+(f c1 + µc2

f

∑
i=1

gi

bi
)
]
+

nc
µg0

M−∑ f
i=1 bi

[(f c1 + µc2 ∑ f
i=1

gi
bi

)

M−∑ f
i=1 bi

− µc2gi

b2
i

]

Let ∂Ec
∂ bi

= 0 and let A = f c1 + µc2 ∑ f
i=1

gi
bi

, then

ncµg0A+nRi c2b2
0−nR0Ab2

0

ncµg0b0 +nR0b3
0

=
µgic2

b2
i

(33)

for i = 1,2, . . . , f .

Unfortunately, this is a non-linear equation system on
which we cannot obtain a closed form solution. Numerical
methods are not applicable in our applications as explained
earlier. In what follows, we perform a simplification on the
equation system to get some guidance for space allocation.

Observe that the left hand side of the equation is the
same for any i, except the part nRi c2b2

0. However, we find
that this part may be neglected based on the following anal-
ysis. First, we rewrite Equation 33 to:

ncµg0A−nR0Ab2
0

ncµg0b0 +nR0b3
0

=
µgic2

b2
i
− nRi c2b0

ncµg0 +nR0b2
0

(34)

Next, we compare the two parts of the right hand side of the
equation. Let yi =

nRi c2b0

ncµg0+nR0 b2
0

/ µgic2
b2

i
. Then

yi =
nRi b0b2

i(
ncµg0 +nR0 b2

0

)
µgi

<
nRi b0b2

i
ncµ2g0gi

Usually b0 (bi) is not much larger than g0 (gi), but much
smaller than nc, the number of tuples observed in one cy-
cle. The number of hash table evictions of Ri, nRi , is very
small compared to nc, too. Therefore, yi is much smaller
than 1, which means that the part nRi c2b2

0 may be neglected
in Equation 33. Then, the left hand side of Equation 33 is
the same for all bi’s, and hence bi is proportional to

√
gi,

for i = 1,2, . . . , f . This result is the same as that of queries
with the same epoch length. Therefore, we will use the same
heuristics presented in Section 6.3 for space allocation here.

8 Experiments

In this section, we report the results of our experimental
study on the SMAP technique. We first validate our cost
model in Section 8.2. Then Sections 8.3 and 8.4 evaluate the
space allocation schemes and the algorithms for choosing
phantoms, respectively, focusing on queries with the same
epoch length. Section 8.5 evaluates our algorithm using real
collision rate statistics. Section 8.6 evaluates the performance
of SMAP on queries with different epoch lengths.

8.1 Experimental Setup and Data Sets

We have implemented SMAP in C. We use 4 bytes as the
unit of space allocation. Each attribute value or counter has
this size. As explained in Section 2.3, LFTAs are run on a
Network Interface Card with a memory constraint, typically
several hundred KB of memory is allowed. In accordance to
the operational GS system, we consider M between 20,000
and 100,000 units of space (4 bytes each) for hash tables
because there may be multiple independent queries that GS
needs to run in the available memory of the NIC.

18

We used both synthetic and real data sets in our eval-
uation. The real data set is obtained by tcpdump on a net-
work server of AT&T. We extracted TCP headers obtain-
ing 860,000 tuples with attributes source IP, destination IP,
source port and destination port, each of size 4 bytes. The
duration of all these packets is 62 seconds. There are 2837
groups in this 4-attribute relation. For other relations we ex-
tracted in this way, the number of groups varies from 552
to 2836. For the synthetic data sets, we generated 1,000,000
3- and 4-dimensional tuples uniformly at random with the
same number of groups as those encountered in real data.
All the experiments were run on a desktop with Pentium IV
2.6GHz CPU and 1GB RAM.

There are three options to measure the cost of a config-
uration: (1) using the cost model developed in Section 3.2
(or Section 7.1 for queries of different epochs) together with
the collision rate model developed in Section 5; (2) using the
cost model but with real collision statistics (i.e., the numbers
of collisions recorded in an experiment where records really
run through hash tables); (3) using costs measured in a real
implementation in GS. As of the time of writing, the opera-
tional GS system is still using the naive algorithm described
in Section 2.4. AT&T plans to implement SMAP in GS next,
but implementation of such an algorithm in an operational
industrial system takes substantial time. Therefore, we use
options 1 and 2 in our experiments. We first use option (1)
to evaluate our space allocation algorithms (Section 8.3) and
the phantom choosing algorithms (Section 8.4). We can then
choose our best combined algorithm and compare it with
the GP algorithm and the naive algorithm through option
(2), to validate the effectiveness of our algorithm in a more
practical setting (Section 8.5). Experiments on queries with
different epoch lengths (Section 8.6) were conducted in a
similar fashion. We provide validation of the cost model in
Section 8.2 to justify that option (2) is an accurate simula-
tion to a real system implementation.

8.2 Validation of the Cost Model

We have obtained raw log records corresponding to LFTA
queries from the operational GS system to validate our cost
model. The essence of the cost model is that: a probe in a
hash table has the cost of c1, an eviction to HFTA has the
cost of c2, and c2/c1 is a constant value.

The log records were generated every 10 seconds from
an aggregate query that has a 1 minute grouping epoch, so
the log records are at a finer granularity. Each record con-
tains fields such as query name, timestamp, in tuple cnt,
out tuple cnt, cycle cnt, collision cnt, etc. The field cycle cnt
records the total CPU cycles used by the processor in the 10
seconds. These CPU cycles are used to process input tuples
(causing probing costs) and to process output tuples (caus-
ing eviction costs) in the 10 seconds. We can fit a linear

model of the form:
cpu cnt = c1 · in tuple cnt + c2 ·out tuple cnt,

where in tuple cnt denotes the number of records coming
into LFTA and out tuple cnt denotes the number of records
going out of LFTA to HFTA. We performed a comprehen-
sive regression analysis on logs over a 6 hour period using
the above formula and obtained the ratio c2/c1 of about 15
for TCP data, with less than 1% mean square error. This re-
sult shows that our cost model accurately captures the real
system performance.

The ratio c2/c1 measured in our earlier work was 50 [33].
Due to various improvements on GS over the years, the cur-
rent measured ratio is 15 and we have re-run all the experi-
ments using this ratio in this paper. In any case, the analysis
remains the same and our algorithms still achieve consider-
able performance gain.

8.3 Evaluation of Space Allocation Strategies

Our first experiment aims to evaluate the performance of
various space allocation strategies. In these experiments we
derive our parameters from the real data set. Our observa-
tions were consistent across a large range of real and syn-
thetic data sets. We vary M from 20,000 to 100,000 at steps
of 20,000 and the granularity for increasing space while ex-
ecuting exhaustive space allocation (ES) is set at 1% of M.
We compute the cost using Equation 7 with the collision rate
model for clustered data.

8.3.1 Tractable Configurations

We first experimentally validate the results of our analysis
for the case of configurations for which we can analytically
reason about the goodness of space allocation strategies.

For the case with no phantoms, (assuming x = µg/b
as collision rate) we compared the cost obtained using the
exhaustive space allocation (ES) with the cost obtained us-
ing a scheme that allocates space according to our analyt-
ical expectations, namely, allocating space proportional to
the square root of number of groups. We tested all possible
configurations with no phantoms on the real data. The cost
obtained using our proposed space allocation scheme has a
difference less than 1% compared to the optimal cost (ob-
tained using ES).

For the case with only one phantom feeding all queries,
we use our optimal space allocation scheme derived based
on the approximation of collision rate x by µg/b. We again
compare the cost obtained using our space allocation scheme
to that obtained using ES using all possible configurations
on the real data set. The average relative difference between
the cost obtained from our scheme and the optimal cost is
usually less than 1% and the maximum observed was 2%.

19

Therefore, the results are accurate despite the approximation
(x = µg/b) to collision rates.

8.3.2 Intractable Configurations

For intractable configurations, we evaluated the heuristics
SL, SR, PL, PR as described in Section 6.3. We tested on all
possible configurations on the real data set (four attributes).
We divide the costs obtained using the heuristics by the op-
timal cost (obtained using ES) to get relative costs for the
heuristics. Figures 15 shows the relative costs obtained using
the heuristics for some representative configurations. The
average relative costs obtained using the heuristics compared
to the optimal cost of all configurations are summarized in
Table 3.

 0.9

 1

 1.1

 1.2

 20 40 60 80 100

re
la

tiv
e

co
st

M(thousand)

SL
SR
PL
PR

(a) ABC(AC(A C) B)

 0.9

 1

 1.1

 1.2

 20 40 60 80 100

re
la

tiv
e

co
st

M(thousand)

SL
SR
PL
PR

(b) ABCD(ABC(A BC(B C)) D)
Fig. 15 Comparison of space allocation schemes

We observe that generally SL and SR are better than PL
and PR. Thus, heuristics inspired by our analytical results
appear beneficial. Relative costs obtained using PL and PR
can be as large as 30% more than the optimal cost. The cost
obtained using SR is smaller than those using PL and PR, but
it is in most cases more than the cost of SL. From Table 3,
which shows the average relative costs obtained using the
four different heuristics, we observe that SL is the best for
almost all values of M. Therefore, SL may be a good choice
of space allocation. To verify this, we further accumulate
statistics in order to see in all configurations tested how fre-
quently SL is the heuristic yielding the minimum cost. In

M (thousand) 20 40 60 80 100
SL 1.024 1.010 1.004 1.001 1.001
SR 1.021 1.017 1.014 1.011 1.011
PL 1.083 1.084 1.085 1.086 1.092
PR 1.080 1.105 1.115 1.119 1.125

Table 3 Average relative costs of the four heuristics

M (thousand) 20 40 60 80 100
SL being best (%) 31 65 89 92 100

Difference from the best (%) 0.034 0.014 0.005 0 0

Table 4 Statistics on SL

Table 4, we present the percentage of configurations tested
in which SL yields minimum cost among the four heuris-
tics, as well as for the cases that SL does not yield the min-
imum cost, how far the cost obtained using SL is from the
minimum cost obtained using the heuristics. These results

(which are representative of a large set of experiments con-
ducted) attest that SL behaves very well across a wide range
of configurations. Even in the cases that it is not the best it
remains highly competitive to the best solution. Therefore
we would choose SL for space allocation in our algorithms.

8.4 Evaluation of the Phantom Choosing Algorithms

We now turn to the evaluation of algorithms to determine
beneficial configurations of phantoms. We will evaluate the
adapted algorithm GP and our proposed algorithm GC. Based
on previous experimental results, we will consider the two
most representative space allocation schemes, SL and PL;
we refer to the combination of GC with SL and PL as GCSL
and GCPL, respectively. For GP, we would add space of φg
each time a phantom is added in the current configuration
under consideration until there is not enough space for any
additional phantom to be considered. At this point we allo-
cate the remaining space to relations already in the config-
uration proportional to their number of groups. We use the
following method to obtain the optimal configuration cost
as a yardstick for measuring other methods. We explore all
possible combinations of phantoms and for each configura-
tion we use exhaustive space (ES) allocation to calculate the
cost, and then choose the configuration with the minimum
overall cost. We will refer to this method as EPES in the
remainder. We still compute the cost using Equation 7 with
the collision rate model for clustered data.

We look at the query set {A, B, C, D} on a 4-dimensional
synthetic data set generated as described in Section 8.1 with
M set to 40,000. Figure 16 presents the relative costs ob-
tained using different algorithms normalized by the optimal

 1

 1.1

 1.2

 1.3

 1.4

 0.4 0.6 0.8 1 1.2 1.4 1.6

re
la

tiv
e

co
st

φ

GCSL
GCPL

GP

Fig. 16 Phantom choosing algorithms

cost obtained using EPES. Algorithm GP has a parameter
φ . Since a good value of φ is not known a priori, we vary
it and observe the trend of the cost resulting from different
φ values. The cost of GP first decreases and then increases,
as φ increases. If φ is too small, each phantom is allocated
a small amount of space, at the expense of high collision
rate. On the other hand, if φ is too large, each phantom has
low collision rate, but each phantom takes too much space
and prohibits addition of further phantoms, which could be

20

beneficial. This alludes to a knee in the cost curve signify-
ing the existence of an optimum value. Algorithms GCSL
and GCPL do not have the parameter φ , so their costs are
constant in the Figure. Even though a minimum point can
be found for the cost obtained using GP as φ varies, GCSL
and GCPL are always better than GP due to better phantom
choosing strategies (supernode heuristics based on our anal-
ysis). GCSL is better than GCPL because GCSL uses a bet-
ter space allocation scheme. Thus, GCSL benefits from both
the way we choose phantoms and the way space is allocated.

Figure 17 presents the change in the overall cost in the

 1

 1.5

 2

 2.5

 3

 0 1 2 3

re
la

tiv
e

co
st

phantoms chosen

GCSL
GCPL

GP phi=0.8
GP phi=1.2
GP phi=1.6
GP phi=2.0

Fig. 17 Phantom choosing process

above scenario as each phantom is chosen. We observe that
the first phantom introduces the largest decrease in cost.
The benefit decreases as more phantoms are added. Note
that the third phantom added by GP with φ = 0.8,1.2 is
different from the third phantom added by GCSL due to
the differences in the space allocation scheme. For GP with
φ = 1.6,2.0, there is no space to add more than one phan-
tom. The optimal configuration for this set of queries is
ABCD(AC(A C) BD(B D)) obtained through EPES. GCSL
finds the same configuration, while GP finds the configura-
tion of ABCD(ABC (AC(A C) B)).

We conducted an additional experiment which varies M
and uses the synthetic data set with four attributes, compar-
ing GCSL and GP. Figure 18 shows the relative cost (com-
pared to the optimal cost) obtained using GCSL and GP with

 1

 1.05

 1.1

 1.15

 1.2

 20 40 60 80 100

re
la

tiv
e

co
st

M(thousand)

GCSL
GP phi=0.4
GP phi=0.8
GP phi=1.2

Fig. 18 Cost comparison

various φ values. The cost obtained using GCSL is always
lower than 1.04 times of the optimal, and is also always
lower than the cost obtained using GP.

8.5 Experiments with Real Collision Statistics

Now we use option (2) as described in Section 8.1 to evalu-
ate our algorithm. We implemented the hash tables and then
let the data stream actually run through the phantoms and
queries. We record the collision counts of the hash tables and
compute the costs using the cost model (Equation 7). Again,
we normalize the costs obtained using GCSL and GP by the
cost of the optimal cost obtained using EPES, to get relative
costs.

Synthetic Data. The relative costs obtained using GCSL
and GP on the synthetic data set are shown in Figure 19(a).
For GP, we tried different φ values, and only the one with the
lowest cost at each value of M is plotted. The cost of GCSL

 0

 1

 2

 3

 4

 20 40 60 80 100

re
la

tiv
e

co
st

M(thousand)

GCSL
GP

(a) GCSL vs. GP

 0

 5

 10

 15

 20

 25

 30

 35

 40

 20 40 60 80 100

re
la

tiv
e

co
st

M(thousand)

GCSL
no phantom

(b) GCSL vs. no phantom

Fig. 19 Comparison on synthetic data set

is always much lower than that of GP, even if we could al-
ways choose the best φ for GP (which is impossible in prac-
tice). This confirms the results of the previous experiments
based on the collision rate model. When M=100,000, the
cost of GCSL is as low as 26% of the cost of GP. While GP
can have cost as high as 3.8 times the optimal cost, GCSL is
always within 1.2 times the optimal cost.

In order to validate the effectiveness of phantoms for
computing multiple aggregations, we also compared GCSL
with the naive method as described in Section 2.4, i.e., to
process the queries without any phantom. We run the ex-
periments using the same setting as the previous one and
the relative costs obtained using GCSL and using the naive
method are shown in Figure 19(b). It is evident that main-
taining phantoms reduces the cost significantly (more than
an order of magnitude in many cases). The relative cost ob-
tained using the naive method increases as M increases be-
cause the optimal cost (obtained using EPES) decreases as
M increases while the cost obtained using the naive method
is constant.

Real Data. We conducted the same experiment using
real data this time and the query set {AB, BC, BD, CD}. Fig-
ure 20 shows the results. It is evident that GCSL outperforms
GP and the naive method by a large margin. The optimal
configuration for this set of queries (e.g., when M=40,000)
is ABCD(AB BCD(BC BD CD)) obtained through EPES.
GCSL finds the same configuration, while GP finds the con-
figuration of ABCD(ABC(AB BC) BD CD).

21

 0

 1

 2

 3

 4

 5

 20 40 60 80 100

re
la

tiv
e

co
st

M(thousand)

GCSL
GP

(a) GCSL vs. GP

 0

 5

 10

 15

 20

 25

 30

 35

 20 40 60 80 100
re

la
tiv

e
co

st
M(thousand)

GCSL
no phantom

(b) GCSL vs. no phantom

Fig. 20 Comparison on real data set

8.5.1 Effect of Misestimation in Number of Groups

Sampling and sketching techniques are used to estimate the
number of groups for each relation. These techniques can
only provide approximate numbers. Further, we use the pre-
vious time window’s numbers of groups to predict the cur-
rent time window’s numbers, which may also introduce some
errors. We performed experiments to see how the misesti-
mation affects the performance of our algorithm. We have
randomly introduced errors in ranges varying from -50% to
50% to the actual numbers of groups of the relations and
still compare the performance of GCSL to the naive method.
Representative results are shown in Figure 21 for M=60,000
and M=100,000. Compared to the naive method, GCSL has
quite stable performance gain over the naive method even
with a wide range of misestimation.

 0

 2

 4

 6

 8

 10

 12

 14

 16

-50 -40 -30 -20 -10 0 10 20 30 40 50

re
la

tiv
e

co
st

deviation of g (%)

GCSL
no phantom

(a) M=60,000

 0

 5

 10

 15

 20

 25

 30

 35

 40

-50 -40 -30 -20 -10 0 10 20 30 40 50

re
la

tiv
e

co
st

deviation of g (%)

GCSL
no phantom

(b) M=100,000

Fig. 21 Effect of misestimation in number groups

8.5.2 Peak Load Constraint and Running Time

The end-of-epoch (EE) cost Ee described in Section 3.2.2
can be calculated according to Equation 8. It must be smaller
than the peak load constraint Ep. If Ee exceeds Ep, we can
use two methods to resolve it: shrink and shift. The shrink
method shrinks the space of all hash tables proportionally.
The shift method shifts some space from queries to phan-
toms since c2 is much larger than c1 and a major part of
the update cost is incurred by queries. For the real data set
and the query set {AB, BC, BD, CD}, given a space allo-
cation, we calculate its Ee; then we set Ep to a percentage
of Ee and use the two methods to reallocate space. After
the reallocation, we run the data through the configuration
and we compute the cost when M = 40,000. The results
are in Figure 22. When Ep is not much smaller than Ee, the

0

0.5

1

1.5

2

2.5

3

82 84 86 88 90 92 94 96 98

re
la

tiv
e

co
st

peak load constraint (%)

shrink
shift

Fig. 22 Peak load constraint

shift method performs better; while when Ee is much larger
than Ep, the shrink method performs better. The reason is
that when Ee is close to Ep, a small shift to reduce Ee suf-
fices. When Ee and Ep differ by much, a major shift in space
results in non-optimal space allocation and thus shrink is
better. Similar behavior is observed when M is set as other
values. In terms of the performance of our algorithms, the
running time of GCSL in all configurations we tried is sub-
millisecond, which is negligible compared to a time window
of at least several seconds long. While typically we just have
a few aggregate queries running together, our algorithm has
good scalability since the computation cost is linear to the
number of relations in the feeding graph.

8.6 Queries with Different Epoch Lengths

We summarize all the experimental results on queries with
different epoch lengths in this subsection. We used the same
data sets as before as well as a very similar sets of exper-
iments to the ones presented in previous subsections. The
main differences are that here the queries have different epoch
lengths and Equation 29 is used to compute the overall cost.
In terms of methods to measure costs, we followed a sim-
ilar fashion to how we measured costs for queries with the
same epoch length. Sections 8.6.1 and 8.6.2 uses option (1);
Section 8.6.3 uses option (2).

8.6.1 Evaluation of Space Allocation Strategies

We used two query sets, {A, B, C} and {AB, BC, BD, CD}.
For {A, B, C}, we evaluated various sets of epoch lengths,
(2,3,5), (3,4,5) and (1,5,9); each number in a set of epoch
lengths corresponds to the epoch length of a query. For ex-
ample, (2,3,5) means that the epoch lengths of A, B and C
are 2, 3 and 5, respectively. For {AB, BC, BD, CD}, we
also used three sets of epoch lengths, (2,3,5,6), (2,3,5,7) and
(3,5,7,9).

Tractable Configurations. In the new cost model, only
the case with no phantoms is tractable. The cost obtained
using analysis differs from the optimal cost by less than 1%.

Intractable Configurations. Based on the analysis in Sec-
tion 7.2, we still use the heuristics SL, SR, PL, PR described

22

in Section 6.3 for space allocation, but use Equation 29 for
computing costs.

For the case with only one phantom, all the heuristics
achieve a cost within 1.2% difference from the optimal cost
for all experiments.

For other cases, we have tested various configurations.
In most cases, SL is the best among all the heuristics. In
rare cases where SL is not the best, it is very close to the
best heuristic. Figure 23 shows the relative costs (normal-
ized by the optimal cost) obtained using the four heuristics
as functions of the available memory M for two representa-
tive configurations, (ABC(AC(A C) B)) with epoch lengths
(2, 3, 5) for queries {A, B, C}, and ABCD(AB BCD(BC
BD CD)) with epoch lengths (2, 3, 5, 6) for queries {AB,
BC, BD, CD}.

 0.95

 1

 1.05

 1.1

 1.15

 20 40 60 80 100

re
la

tiv
e

co
st

M(thousand)

SL
SR
PL
PR

(a) (ABC(AC(A C) B))

 0.9

 1

 1.1

 1.2

 1.3

 20 40 60 80 100

re
la

tiv
e

co
st

M(thousand)

SL
SR
PL
PR

(b) ABCD(AB BCD(BC BD CD))
Fig. 23 Comparison of space allocation schemes

Table 5 presents the average relative costs obtained us-
ing the four heuristics for all the experiments we have done.
It also suggests that SL is the best for all values of M. In
the following experiments evaluating phantom choosing al-
gorithms, we will only consider the two most representative
space allocation schemes, SL and PL.

M (thousand) 20 40 60 80 100
SL 1.038 1.021 1.011 1.031 1.001
SR 1.023 1.033 1.030 1.027 1.022
PL 1.097 1.105 1.107 1.101 1.092
PR 1.088 1.122 1.133 1.132 1.122

Table 5 Average relative costs of the four heuristics

8.6.2 Evaluation of Phantom Choosing Algorithms

Like what we did in the case of single query epoch length,
we considered three algorithms GCSL, GCPL and GP for
phantom choosing. The costs obtained using these algorithms
are normalized by the optimal cost (obtained using EPES)
and hence represented as relative costs. Costs are computed
using Equation 29. We used the query set {A, B, C, D} with
epoch lengths (2,3,5,6) on the 4- dimensional synthetic data
set, M set as 40,000. Figure 24 presents the relative costs
obtained using different algorithms. The result is similar to
the case of single query epoch length. GCPL and GCSL are
both always better than GP. Even though a minimum point

can be found for the cost obtained using GP as φ varies,
GCSL and GCPL are always better than GP due to better
phantom choosing strategies (supernode heuristics based on
our analysis). GCSL is better than GCPL due to the better
space allocation scheme.

 1

 1.1

 1.2

 1.3

 1.4

 0.4 0.6 0.8 1 1.2 1.4 1.6

re
la

tiv
e

co
st

φ

GCSL
GCPL

GP

Fig. 24 Comparison of phantom choosing algorithms,M=40,000

Figure 25 shows comparison between the relative costs
obtained using GCSL and GP with different φ values as the
value of M changes. Again, the cost obtained using GP may
have a minimum point at a certain M value for each φ value,
but GCSL constantly outperforms GP for all cases.

 1

 1.05

 1.1

 1.15

 1.2

 20 40 60 80 100

re
la

tiv
e

co
st

M(thousand)

GCSL
GP phi=0.4
GP phi=0.8
GP phi=1.2

Fig. 25 Cost comparison

8.6.3 Experiments with Real Collision Statistics

Now we use option (2) as described in Section 8.1 to eval-
uate our algorithm for queries with different epoch lengths.
We still used the query set {A, B, C, D} with epoch lengths
(2,3,5,6) on 4-dimensional synthetic data. The relative costs
(normalized by the optimal cost) obtained using GCSL and
GP are compared in Figure 26(a) as functions of M. We
tried different φ values for GP and picked the best one at

 0

 1

 2

 3

 4

 20 40 60 80 100

re
la

tiv
e

co
st

M(thousand)

GCSL
GP

(a) GCSL vs. GP

 0

 5

 10

 15

 20

 25

 20 40 60 80 100

re
la

tiv
e

co
st

M(thousand)

GCSL
no phantom

(b) GCSL vs. no phantom

Fig. 26 Comparison on synthetic data set

each M value to present in the figure. GCSL constantly out-

23

performs GP even if we could always choose the best φ
value. While GP can have a cost as high as 3 times the op-
timal cost, GCSL always has a cost within 1.4 times the
optimal cost. With the same experimental setting, we also
compared GCSL with the naive method, i.e., processing the
queries without any phantom, and the result is shown in Fig-
ure 26(b). Compared to the naive method, our SMAP tech-
nique does yield significant cost reduction even for queries
with different epoch lengths, as much as a factor of 20 at the
point of M = 100,000.

We repeated the above experiment using the real data set
as described in Section 8.1. We used the query set {AB, BC,
BD, CD} with epoch lengths (2,3,5,6). Figure 27 presents
the results. We still observe that GCSL always outperforms
GP and processing without phantoms by a large margin.

 0

 1

 2

 3

 4

 5

 20 40 60 80 100

re
la

tiv
e

co
st

M(thousand)

GCSL
GP

(a) GCSL vs. GP

 0

 5

 10

 15

 20

 25

 30

 35

 20 40 60 80 100

re
la

tiv
e

co
st

M(thousand)

GCSL
no phantom

(b) GCSL vs. no phantom

Fig. 27 Comparison on real data set

It is easy to see that the peak load for the case of different
query epoch lengths happens at the end of each cycle, when
all relations need to perform EE updates. We tried the same
two methods, shrink and shift, like in the case of single query
epoch length, to keep the peak load within the constraint Ep.
The results obtained exhibit very similar behavior to those of
the case of single query epoch length and are omitted here.
As for running time of our algorithms, we still observe sev-
eral to tens of milliseconds, which is still extremely fast and
suits our application very well.

9 Related Work

The focus of our work is how to optimize the computation
when processing multiple aggregate queries over the net-
work data streams. This work is closely related to the prob-
lem of multi-query optimization, that is, optimizing multi-
ple queries for concurrent evaluation. This problem has been
around for a long time, and several techniques for this prob-
lem have been proposed in the context of a conventional
DBMS. Hall [21] uses operator trees to represent the queries
and a bottom-up traversal algorithm to find common subex-
pressions. Roussopoulos [30] uses query graphs [32] to find
views for indexing to minimize the total cost of answering
all queries. Charkravarthy and Minker [7] extended query
graphs to integrated query graphs and proposed an algorithm

based on integrated query graphs. Finkelstein [17] studied
how query processing can be improved using answers pro-
duced from early queries when no common expressions are
found for multiple query optimization. The basic idea of
all these techniques is the identification of common query
subexpressions, whose evaluation can be shared among the
query execution plans produced. Our technique of sharing
computation common to multiple aggregate queries is based
on the same idea, but our technique is specially devised for
data stream applications where the data inputs stream by the
system at extremely high speed.

Our problem has similarities to the view materialization
problem, which has been studied extensively in the literature
(a survey can be found in [20]). Ross et al. [29] have studied
the problem of identifying, in a cost-based manner, what ad-
ditional views to materialize, in order to reduce the total cost
of view maintenance. Harinarayan et al. [23] proposed a lat-
tice framework to represent the dependencies among views
and a greedy algorithm to determine which views to materi-
alize. Our idea of additionally maintaining phantoms, and
choosing which phantoms to maintain, to efficiently pro-
cess multiple aggregations is based on the same conceptual
idea. However, due to two differences: i) maintaining a view
uses fixed space while maintaining a phantom can use flex-
ible space; ii) maintaining a view is always beneficial while
maintaining a phantom is not, the greedy algorithm pro-
posed by Harinarayan et al. [23] is not directly applicable
to our problem. Although we can somehow adapt the view
materialization algorithm to our problem, the adapted algo-
rithm is very cumbersome and shown to be inefficient by
our experiments. We devised a novel greedy algorithm for
our problem which optimizes the cost.

Conceptually, our proposed phantoms have similarities
to partial preaggregates. Larson [27] shows that if an expen-
sive query (join, select, union, etc) has aggregation on top,
we can preaggregate on any attribute set that functionally
determines the group-by attributes, to reduce the query cost.
In our case, the preaggregation (phantoms) is shared by mul-
tiple queries rather than reducing the cost of one expensive
query. Larson [27] provides a model for estimating the out-
put size, while our collision rate model estimates the number
of collisions of hash tables.

Many papers (see, e.g., [11,6,8]) have highlighted the
importance of resource sharing in continuous queries. Chen
et al. [11] and Madden et al. [28] use variants of predicate
indexes for resource sharing in filters in continuous query
processing systems. In the context of query processing over
data streams, Dobra et al. [16] considered the problem of
sharing sketches for approximate join-based processing.

On computing aggregations over data streams, Gehrke
et al. [18] proposed single-pass techniques for approximate
computation of correlated aggregations such as “compute
the percentage of international phone calls that are longer

24

than the average duration of a domestic phone call”, whose
exact answer requires multiple passes over the data. Chaud-
huri et al. [10] use sampling-based technique to provide ap-
proximate answers to aggregate queries, but different from
previous studies, they treat the problem as an optimization
problem whose goal is to minimize the error in answering
queries in the given workload. Dobra et al. [15] use ran-
domized techniques that compute “small” summaries of the
streams to provide approximate answers for general aggre-
gate SQL queries with provable guarantees on the approx-
imation error. Gilbert et al. [19] use sketching techniques
to approximate wavelet projections that represent the origi-
nal data stream. However, none of these papers considered
query optimization through sharing among different queries.
Diao et al. [14] proposed filtering techniques for optimizing
multiple queries on XML data streams. Demers et al. [13]
presented a publish/subsribe system and considered multi-
ple query optimization on event streams. Hong et al. [24]
proposed a framework for multi-query optimization through
the use of transformation rules.

Chandrasekaran and Franklin [9] and Arasu and Widom [3]
studied sharing data structures among sliding window queries
posed on the same input stream, aggregate function and ag-
gregated attributes. The sharing queries only differ in the
window specifications. The approach proposed in [9] is to
maintain a ranked n-ary tree on the recent data that can cover
all the sliding windows of the queries. Each leaf of the tree
is a data record of the stream and the leaves are sorted in the
order of their insertion times. Each internal node stores the
value of the aggregate function computed over the descen-
dent leaves of that node. This algorithm has an update and
search cost of O(logn), where n is the number of elements
maintained in the tree, which equals the number of elements
needed to cover all the query windows. The other work,
Arasu and Widom [3], proposes to exploit the distributive or
algebraic properties of the aggregate functions. These prop-
erties ensure that the aggregation over the union of two sets
of elements can be computed from the aggregation over each
set (for example, SUM(S1

⋃
S2) = SUM(S1) + SUM(S2)).

The idea of Arasu and Widom [3] is to precompute the ag-
gregation over some intervals and store them. When an ag-
gregate query is issued, the window of the query is decom-
posed into intervals whose aggregations have been precom-
puted. Then the asked aggregation can be computed from the
precomputed aggregations. This approach uses more space
(to store the precomputed aggregations) and may have more
update costs. Our approach shares the computation among
different aggregated attributes, or relations in general. More
recently, Krishnamurthy et al. [26] investigated sharing of
resources among streamed aggregations by exploiting sim-
ilarities in the queries. This study focused on methods for
sharing time slices among queries with the same predicate
but varying windows, sharing data fragments with different

predicates but the same time window, and a combination of
these two types of sharing. Our work focuses on detailed
schemes for allocating resources to each query that shares
computation.

10 Conclusions and Discussions

Monitoring aggregates on IP traffic data streams is a com-
pelling application for data stream management systems. Eval-
uating multiple aggregations in a two level DSMS architec-
ture is an important practical problem. We introduced the
notion of phantoms (fine-granularity aggregation queries)
that has the benefit of supporting shared computation. We
formulated the MA optimization problem, analyzed its com-
ponents and proposed greedy heuristics which we subse-
quently evaluated using real and synthetic data sets to demon-
strate the effectiveness of our techniques.

Our work has focused on aggregate queries with the count
function on tumbling windows. It is also possible to apply
our technique to more general cases: (i) Sharing among ag-
gregate queries with the same other function, e.g., sum. We
simply maintain the sum of the records in hash table en-
tries rather than the count, same with max or min. If the
function is average, we can maintain both the count and
the sum of records in hash table entries to obtain the av-
erage. (ii) Sharing among aggregate queries with different
functions, e.g., max and count. We can maintain both the
max and the count of records in hash table entries for phan-
toms. (iii) Sharing among other predicates besides aggre-
gate queries. We can adopt a similar idea on selections and
projections. However, as selections and projections can be
processed rather straightforwardly, whether using phantoms
is beneficial requires more cost analysis. We defer such in-
vestigations to future work. (iv) Sharing among queries with
sliding windows or a combination of sliding and tumbling
windows. We can adopt the technique proposed by Krishna-
murthy et al. [26] to break a sliding window into two slices.
Sliced windows from different queries are combined when
they have the same period, which become essentially tum-
bling windows, and then we can use our technique on such
combined queries. Since a tumbling window is a special case
of a sliding window, a combination of sliding and tumbling
windows can be processed in the same way.

Another interesting direction of further study is the re-
placement policy of the hash tables. In the current GS sys-
tem, an old entry is evicted whenever a collision occurs. This
is probably a good policy considering the clusteredness in
the data – many following records would be in the same flow
(group) and cause no collision. However, the experiments in
Section 5.3 show that the average flow length is close to 1
for relations of depths greater than 2 in the configuration
tree. The average flow length being 1 means the groups are
randomly mixed. In this case, the best policy may be not to

25

replace the old entry on collision, but to simply evict the new
entry. This is because high-frequency groups are likely to be
created earlier than low-frequency groups and keeping the
high-frequency groups in the hash table would reduce the
collisions in total. Therefore, a more sophisticated replace
policy depending on the depth of a relation may further re-
duce the overall cost.

Acknowledgements We would like to thank Ted Johnson for point-
ing out that Equation 12 may be further simplified. This work is par-
tially supported by the Australian Research Council’s Discovery fund-
ing scheme (project number DP0880250).

References

1. N. Alon, Y. Matias, and M. Szegedy. The space complexity of
approximating the frequency moments. In ACM Symposium on
Theory of Computing (STOC), pages 20–29, Philadephia, USA,
1996.

2. A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani,
I. Nishizawa, U. Srivastava, D. Thomas, R. Varma, and J. Widom.
STREAM: The stanford stream data manager. IEEE Data Engi-
neering Bulletin, 26(1):19–26, 2003.

3. A. Arasu and J. Widom. Resource sharing in continuous sliding-
window aggregates. In International Conference on Very Large
Data Bases (VLDB), pages 336–347, Toronto, Canada, 2004.

4. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Mod-
els and issues in data stream systems. In ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS),
pages 1–16, Madison, USA, 2002.

5. A. D. Barbour, L. Holst, and S. Janson. Poisson Approximation.
Oxford Science Publications, 1992.

6. D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik. Mon-
itoring streams - a new class of data management applications.
In International Conference on Very Large Data Bases (VLDB),
pages 215–226, Hong Kong, China, 2002.

7. U. Chakravarthy and J. Minker. Processing multiple queries in
database systems. IEEE Database Engineering Bulletin, 5(3):38–
44, 1982.

8. S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin,
J. M. Hellerstein, S. K. W. Hong, S. Madden, V. Raman, F. Reiss,
and M. Shah. TelegraphCQ: Continuous dataflow processing for
an uncertain world. In Conference on Innovative Data Systems
Research (CIDR), Asilomar, USA, 2003.

9. S. Chandrasekaran and M. J. Franklin. Streaming queries over
streaming data. In International Conference on Very Large Data
Bases (VLDB), pages 203–214, Hong Kong, China, 2002.

10. S. Chaudhuri, G. Das, and V. Narasayya. A robust, optimization-
based approach for approximate answering of aggregate queries.
In ACM International Conference on Management of Data (SIG-
MOD), pages 295–306, Santa Barbara, USA, 2001.

11. J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scal-
able continuous query system for internet databases. In ACM
International Conference on Management of Data (SIGMOD),
pages 379–390, Dallas, USA, 2000.

12. C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk. Gigas-
cope: A stream database for network applications. In ACM Inter-
national Conference on Management of Data (SIGMOD), pages
647–651, San Diego, USA, 2003.

13. A. J. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. M.
White. Towards expressive publish/subscribe systems. In EDBT,
pages 627–644, 2006.

14. Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. M. Fischer.
Path sharing and predicate evaluation for high-performance xml
filtering. ACM Trans. Database Syst., 28(4):467–516, 2003.

15. A. Dobra, M. N. Garofalakis, J. Gehrke, and R. Rastogi. Process-
ing complex aggregate queries over data streams. In ACM Inter-
national Conference on Management of Data (SIGMOD), pages
61–72, Madison, USA, 2002.

16. A. Dobra, M. N. Garofalakis, J. Gehrke, and R. Rastogi. Sketch-
based multi-query processing over data streams. In International
Conference on Extending Database Technology (EDBT), pages
551–568, Heraklion, Greece, 2004.

17. S. Finkelstein. Common expression analysis in database applica-
tions. In ACM International Conference on Management of Data
(SIGMOD), pages 235–245, Orlando, USA, 1982.

18. J. Gehrke, F. Korn, and D. Srivastava. On computing correlated ag-
gregates over continual data streams. In ACM International Con-
ference on Management of Data (SIGMOD), pages 13–24, 2001.

19. A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surf-
ing wavelets on streams: One-pass summaries for approximate ag-
gregate queries. In International Conference on Very Large Data
Bases (VLDB), pages 79–88, Roma, Italy, 2001.

20. A. Gupta and I. S. Mumick. Maintenance of materialized views:
Problems, techniques and applications. IEEE Data Engineering
Bulletin, Special Issue on Materialized Views and Data Warehous-
ing, 18(2):3–18, 1995.

21. P. A. V. Hall. Optimization of single expressions in a relational
data base system. IBM Journal of Research and Development,
20(3):244–257, 1976.

22. M. A. Hammad, M. F. Mokbel, M. H. Ali, W. G. Aref, A. C.
Catlin, A. K. Elmagarmid, M. Y. Eltabakh, M. G. Elfeky, T. M.
Ghanem, R. Gwadera, I. F. Ilyas, M. S. Marzouk, and X. Xiong.
Nile: A query processing engine for data streams. In ICDE, page
851, 2004.

23. V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing
data cubes efficiently. In ACM International Conference on Man-
agement of Data (SIGMOD), pages 205–216, Montreal, Canada,
1996.

24. M. Hong, M. Riedewald, C. Koch, J. Gehrke, and A. J. Demers.
Rule-based multi-query optimization. In EDBT, 2009.

25. N. Koudas and D. Srivastava. Data stream query processing: A
tutorial. In International Conference on Very Large Data Bases
(VLDB), page 1149, 2003.

26. S. Krishnamurthy, C. Wu, and M. J. Franklin. On-the-fly sharing
for streamed aggregation. In SIGMOD Conference, 2006.

27. P.-Å. Larson. Data reduction by partial preaggregation. In ICDE,
2002.

28. S. Madden, M. Shah, J. Hellerstein, and V. Raman. Continuously
adaptive continuous queries over streams. In ACM International
Conference on Management of Data (SIGMOD), pages 49–60,
Madison, USA, 2002.

29. K. A. Ross, D. Srivastava, and S. Sudarshan. Materialized view
maintenance and integrity constraint checking: Trading space for
time. In ACM International Conference on Management of Data
(SIGMOD), pages 447–458, Montreal, Canada, 1996.

30. N. Roussopoulos. View indexing in relational databases. ACM
Transactions on Database Systems (TODS), 7(2):256–290, 1982.

31. M. Sullivan and A. Heybey. Tribeca: A system for managing large
databases of network traffic. In USENIX Technical Conference,
New Orleans, USA, 1998.

32. E. Wong and K. Youssefi. Decomposition - a strategy for query
processing. ACM Transactions on Database Systems (TODS),
1(3):223–241, 1976.

33. R. Zhang, N. Koudas, B. C. Ooi, and D. Srivastava. Multiple ag-
gregations over data streams. In ACM International Conference
on Management of Data (SIGMOD), pages 299–310, Baltimore,
USA, 2005.

