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Debiased recommendation with a randomized dataset has shown very promising results in mitigating system-

induced biases. However, it still lacks more theoretical insights or an ideal optimization objective function

compared with the other more well-studied routes without a randomized dataset. To bridge this gap, we

study the debiasing problem from a new perspective and propose to directly minimize the upper bound of

an ideal objective function, which facilitates a better potential solution to system-induced biases. First, we

formulate a new ideal optimization objective function with a randomized dataset. Second, according to the

prior constraints that an adopted loss function may satisfy, we derive two different upper bounds of the

objective function: a generalization error bound with triangle inequality and a generalization error bound

with separability. Third, we show that most existing related methods can be regarded as the insufficient

optimization of these two upper bounds. Fourth, we propose a novel method called debiasing approximate

upper bound (DUB) with a randomized dataset, which achieves a more sufficient optimization of these upper

bounds. Finally, we conduct extensive experiments on a public dataset and a real product dataset to verify

the effectiveness of our DUB.
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1 INTRODUCTION

Recently, the bias issue in recommender systems has received more attention from both the re-
search communities and industries [27, 28, 36, 44, 45, 50]. Intuitively, as shown in Figure 1, a user
will experience system-induced biases and user-induced biases when interacting with a recom-
mender system. The system-induced biases are caused by the stochastic recommendation policy
deployed on a recommender system and the selection and display order of each item is treated
differently by the policy, including popularity bias [2, 6, 53], selection bias [17, 29, 35] and posi-
tion bias [4, 39]. The user-induced biases depend on the user characteristics, such as trust bias and
conformity bias [3, 24, 25, 52]. These specific biases will eventually be coupled into the data bias

on the user feedback. In this article, we call this type of data a non-randomized dataset.
Since different biases may be coupled, mitigating a set of biases from a data perspective is an im-

portant research route. In addition, it is easier to reduce the system-induced biases by controlling
the recommendation policy than by interactingwith the user to reduce the user-induced biases. For
these reasons, previous works propose using a special uniform policy to replace the stochastic rec-
ommendation policy [5, 7, 20]. Using a uniform policy means that for each user’s request, instead
of using a recommendation model for item delivery, the system randomly selects some items from
all of the candidates and ranks the selected items with a uniform distribution. The users’ feedback
collected under such a uniform policy is called a randomized dataset. A randomized dataset can
be regarded as a good unbiased agent because it largely avoids the sources of the system-induced
biases. However, because the uniform logging policy does not take into account each user’s pref-
erences and tends to show the users a collection of the items that they are not interested in, it
will hurt the users’ experiences and the revenue of the platform. This means that it is necessary
to constrain a randomized dataset collection within a particularly limited network traffic.
To utilize such a scarce and precious randomized dataset to help model training on a non-

randomized dataset, the existing methods can be divided into three categories: (1) Use a random-
ized dataset to re-weight the samples in a non-randomized dataset [35, 47] or to train an imputa-
tion model for data augmentation of a non-randomized dataset [20, 48, 49]. In addition, the two can
be integrated as a doubly robust framework [7, 40]. (2) Design a multi-stage training framework
to alternately use a non-randomized dataset and a randomized dataset to learn debiased parame-
ters [7, 41]. (3) Use a randomized dataset and a non-randomized log dataset to train two models
jointly and constrain them to be close in some way so that the model trained on a non-randomized
dataset can benefit from themodel trained on a randomized dataset [5, 20]. Although these existing
works have shown promising results in mitigating system-induced bias, it is still weak in theoreti-
cal insights or an ideal optimization objective function compared with the other more well-studied
route, that is, debiased recommendation without a randomized dataset [22, 33, 34, 42]. This pre-
vents theoretical analysis of the existing methods and systematic guidance of this research route.

To bridge this gap, we extend previous theoretical insights on debiased recommendationwithout
a randomized dataset [33]. We first formulate a new ideal optimization objective function consid-
ering a randomized dataset and propose a new debiased perspective to facilitate the introduction
of some theoretical insights and a more sufficient solution to the system-induced biases, that is,
the debiasing issue is equivalent to directly optimizing the upper bound of this objective function.
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Fig. 1. The feedback loop in a recommender system, where the observed feedback contains the data bias cou-

pled by the system-induced biases and the user-induced biases. The former is caused by the stochastic rec-

ommendation policy deployed on a recommender system, and the latter depends on the user characteristics.

Then, we derive two upper bounds of the unbiased ideal loss function corresponding to this objec-
tive function in practice: one generalization error bound with triangle inequality (in Section 4.1.1)
and the other with separability (in Section 4.1.2). The difference between the two depends on the
different prior constraints satisfied by the adopted loss function. We show that most existing meth-
ods can be regarded as insufficient optimization of our upper bound and propose a novel debiasing
method called debiasing approximate upper bound (DUB). Our method achieves a more sufficient
optimization on the upper bound, which is expected to further improve performance. We then
conduct extensive experiments on a public dataset and a real product dataset to verify the effec-
tiveness of the proposed method from five different aspects: unbiased testing scenarios, biased
general testing scenarios, the ablation experiments, the distribution of the recommendation lists,
and some key factors that may affect the performance of the proposed method.
The structure of this article is as follows. We briefly introduce some related works in Section 2.

We present some necessary preliminaries in Section 3. We give a detailed description of the
proposed theoretical insights and method in Section 4 and discuss the relations to the existing
debiasing methods in Section 5. We analyze and discuss extensive experimental results in
Section 6. We present a conclusion and some future directions in Section 7. The contributions of
this article are as follows.

• We propose a new debiased perspective and formulate a new ideal optimization objective
function with a randomized dataset, based on which a novel solution to system-induced
biases can be obtained by directly minimizing the upper bound of this ideal optimization
objective function.
• We give some theoretical insights on the upper bound of this ideal optimization objective
function, in which the adopted loss functions satisfy triangle inequality and separability.
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• We show that most existing solutions can be viewed as insufficient optimization of the two
proposed upper bounds and then propose a novel method called debiasing approximate upper

bound (DUB) with a randomized dataset for a more sufficient optimization of the proposed
upper bound.
• We conduct extensive experiments on a public dataset and a real product dataset to show the
effectiveness of the proposed method, including unbiased evaluation, biased general evalu-
ation, ablation experiments of the model and distribution of the recommendation lists, as
well as some key factors that may affect the performance of our DUB.

2 RELATEDWORK

In this section, we briefly review some related works on two research topics: debiased recommen-
dation without a randomized dataset and debiased recommendation with a randomized dataset.

2.1 Debiased Recommendation Without a Randomized Dataset

Due to the lack of such unbiased guidance information similar to a randomized dataset, the ex-
isting works on debiased recommendation without a randomized dataset require making some
prior assumptions about the biases or checking and guaranteeing the unbiasedness of the model
based on some specific sophisticated techniques. The existing works on this research route can be
further subdivided into three classes — heuristic-based methods, inverse propensity score-based
methods [35, 48], and theoretical tools-based methods — depending on the different techniques
employed. A heuristic-based method links a user’s feedback with different specific factors to make
some prior assumptions about the generation process of some specific biases. For example, for
selection bias in the feedback data (also known as missing not at random mechanism), some pre-
vious works have assumed that users’ feedback on an item is related to their rating of the item
and that users will provide their own feedback only when they are particularly satisfied or dissat-
isfied with an item [26, 46]. In addition to linking with ratings, some subsequent works further
consider the different contributions of the user features and the item features in a user’s feed-
back [9, 14, 18]. For conformity bias, some previous works assume that users will refer to public
opinion in the process of feedback decision-making, such as hiding or adjusting their own feed-
back [19, 24, 25, 51]. Based on such prior assumptions, these works usually construct a probabilistic
graphical model or a polynomial mixture model containing feature information for a specific bias
problem and then solve the model parameters based on a generalized expectation maximization
algorithm. An inverse propensity score–based method balances the distribution of the items in
the observed feedback data by the propensity score estimated based on some variable factors so
that a recommendation model trained on the adjusted non-randomized dataset can avoid the in-
terference of these variable factors as much as possible. For example, one of the variable factors
most often considered in the existing works is the relative exposure frequency of each item in
the feedback data. With the adjustment of the propensity score based on the relative exposure
frequency, the exposure distribution of each item in the feedback data is close to uniform [5, 18].
Moreover, a theoretical tool-based method integrates some theoretical tools from other research
fields with debiased recommendation. They usually derive an unbiased ideal loss function that can
be directly optimized for a specific bias problem or, in a case in which this unbiased ideal loss func-
tion is intractable, further derive a generalization error upper bound for it as a tractable alternative
optimization objective. The common theoretical tools in the existing works include information
bottleneck [22, 23, 42], positive-unlabeled learning [34], upper bound minimization [33], disen-
tangled representation learning [52], and causal inference techniques [38, 43]. Our DUB adopts a
similar upper bound minimization idea to provide some new theoretical insights but is quite dif-
ferent from the previous work [33]. We propose a new ideal optimization objective function for
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debiased recommendation with a randomized dataset. The existing works consider only the ideal
optimization objective functions defined on a non-randomized dataset. As described in Section 3,
this new ideal optimization objective function is more favorable for addressing system-induced bi-
ases. It can also be seen as an efficient extension of the existing theoretical insights based on upper
bound minimization when a randomized dataset is available. We give more theoretical insights
where the prior constraints beyond triangle inequality are employed to be compatible with more
choices of loss functions in practice.

2.2 Debiased Recommendation with a Randomized Dataset

The research on this route also introduces a randomized dataset that can act as a proxy for the
unbiased information. Most debiasing methods that fall into this route aim to mine the unbiased
knowledge from a randomized dataset by formulating more sophisticated and efficient techniques
and then use them to guide the training process of a recommendation model on a non-randomized
dataset. The existing works on this research route can be further subdivided into three classes — in-
verse propensity score and imputation labels–based methods, multi-stage training-based methods,
and joint training-based methods—depending on the different techniques employed. An inverse
propensity score and imputation labels–based method utilizes an additional randomized dataset
to estimate the propensity score for each feedback [35, 47] or to make the predictions of the im-
putation labels for unobserved feedback data [20, 21, 48, 49]. These obtained propensity scores or
imputation labels will be integrated into the model’s optimization objective, that is, transfer the
unbiased knowledge into the model’s training process. Propensity score recommendation learning
is a representative work in this sub-route. Two methods are proposed for propensity score estima-
tion based on a randomized dataset: a naïve Bayes estimator and a regression model estimator [35].
Note that the propensity scores are used in both debiased recommendation routes and they differ
in whether the propensity score is estimated from a non-randomized dataset or a randomized
dataset. Some works also consider estimating and using the propensity scores and imputation la-
bels simultaneously to allow the model to benefit more in a doubly robust framework [7, 40]. A
multi-stage training-based method designs effective multi-stage training frameworks in which a
non-randomized dataset and a randomized dataset are used alternately based on the synergy with
which it learns better unbiased parameters. AutoDebias [7] is one of the most representative meth-
ods in this research sub-line. Its main idea is to introduce a meta-learning strategy into a doubly
robust debiasing framework to achieve better learning of the model. In each iteration of training,
the parameters of the main network (i.e., the recommendation model) in the framework are first
fixed and a randomized dataset is used to better estimate the propensity scores and imputation la-
bels in the auxiliary meta-learning network. Then, the parameters of the auxiliary meta-learning
network are fixed and a non-randomized dataset is used for unbiased model parameter learning
in the main network. This multi-stage training mode is repeated until the recommendation model
converges to a better feasible solution. Clearly, AutoDebias can be seen as an effective improve-
ment on the training process towards a doubly robust debiasing framework, which is different
from most existing debiasing methods that aim to improve the model’s optimization objective. A
joint training–based method trains a recommendation model and an auxiliary model for a non-
randomized dataset and a randomized dataset, respectively, and uses custom alignment terms to
directly constrain the two models for joint training. CausE [5] is a pioneering work of this sub-
route that introduces an alignment term of model parameters to facilitate information fusion be-
tween the two models. Since the parameter alignment term will increase the difficulty of model
training in a practical application, instead of aligning the two models on the model parameters,
Bridge [20] constrains the predicted labels of the two models to be as close as possible on an aux-
iliary set sampled from the full set of feedback. In contrast to the existing works, we propose a
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Fig. 2. An example of the difference between a non-randomized dataset Sc and a randomized dataset St .

new perspective on addressing system-induced biases from the upper bound of an unbiased ideal
loss function and provide a theoretical objective function with a randomized dataset that can be
optimized directly. This means that we convert the task of reducing the system-induced biases to
an optimization problem that can be solved directly, which provides more guidance on the use of
a randomized dataset and the analysis of debiasing methods.

3 PRELIMINARIES

3.1 Notations

A typical recommender system usually takes a user ui ∈ U as input and selects an attractive
item vj ∈ V to be displayed to this user through a stochastic recommendation policy πc deployed
by the system, that is, vj ∼ πc (·|ui ). Then, the system will collect the user’s feedback on each
displayed item r ci j ∼ Rc (·|ui ,vj ) ∈ {0, 1}, where r ci j = 1 denotes positive feedback, r ci j = 0 denotes

negative feedback, and Rc is a complete feedback matrix under πc . In this article, we call this
type of data a non-randomized dataset Sc . Based on the collected data Sc , the system will retrain
a recommendation model Mc and update the recommendation policy. Similarly, under a uniform
policy πt , we have that vj ∼ πt (·|ui ) and r ti j ∼ Rt (·|ui ,vj ). Rt is a complete feedback matrix under

πt , the feedback of users recorded under πt is called randomized dataset St , andMt is the auxiliary
model trained on St .
To facilitate understanding of the difference between a non-randomized dataset Sc and a ran-

domized dataset St , we include an example in Figure 2, in which the recommender system is as-
sumed to contain 8 users and 8 items, and a yellow square and a blue square indicate that the
corresponding user-item pair (ui ,vj ) is positive feedback and negative feedback, respectively. Due
to the restricted collection process, the scale and scope of St are often much smaller than that of Sc ,
where scale refers to the amount of data and scope refers to the coverage of users and items. We
can see from Figure 2 that in a randomized dataset St , the number of colored squares is smaller and
there are some users who do not have colored squares. Due to the nature of a uniform policy πt , a
randomized dataset St suffers from less bias than a non-randomized dataset Sc , especially system-
induced biases. From Figure 2, we can see that this relative unbiasedness may be reflected in the
fact that each item has a similar probability of getting feedback from different users (i.e., each item
has a similar number of colored squares) and each user has a preference distribution that is closer
to the ideal state (i.e., due to limited preferences, a user should have far more negative feedback
than positive feedback on all items [30]). We can also see from Figure 2 that a randomized dataset
St may reveal interests for a user that are not perceived in a recommendation policy πc , such
as user 1 for item 8, and may correct for pseudo-negative feedback in a non-randomized dataset
Sc subject to the system-induced biases, such as user 8 for item 3. Note that in order to ensure
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non-overlapping between Sc and St , and because the feedback data in St is more unbiased and
credible, we actually remove from Sc those feedback data that appear in St , such as user 8 for item 3.

Since a non-randomized dataset Sc and a randomized dataset St are part of the complete feedback
matrix (i.e., Rc and Rt ) under a recommendation policy πc and a uniform policy πt , respectively,
we can intuitively conclude that Rc and Rt inherit this difference in bias between Sc and St , that is,
Rt has better unbiasedness than Rc . In particular, each element in Rt can be thought of as a user’s
feedback result after an item has been displayed in all possible ways. This is a result that can be
gradually achieved through the long-term deployment of a uniform policy πt . Unlike R

t , even if
we can obtain Rc , it can alleviate only some of the biases induced by the system and still inevitably
suffers from the rest of these biases, especially pseudo-negative feedback.

3.2 Problem Formulation

The optimization objective of most existing recommendation methods is the average loss function
over the observed feedback under a policy πc ,

L�
observed (R

c , R̂c ) =
1

|O|
∑

(i, j )∈O
�
(
Rci, j , R̂

c
i, j

)
, (1)

where O ∈ {(i, j )} denotes a set of observed feedback, R̂c denotes the predicted label matrix ofMc ,
and � (·, ·) is an arbitrary loss function. Equation (1) can be regarded as the simplest estimator of
the ideal optimization objective under policy πc ,

L�
πc−ideal (R

c , R̂c ) =
1

|D|
∑

(i, j )∈D
�
(
Rci, j , R̂

c
i, j

)
, (2)

where D denotes the complete set of feedback. Due to system-induced biases, Equation (1) is not
an unbiased estimation of Equation (2) [26, 37]. Instead, some previous works on debiased recom-
mendation without a randomized dataset have shown that better performance can be obtained by
optimizing an unbiased estimation or a generalization error bound of Equation (2) [33, 35].

However, as described in Section 3.1, even if we can obtain the complete feedback matrix Rc

under a recommendation policy πc , R
c can alleviate only some of the biases induced by the system.

This means that an unbiased estimator for Rc is not necessarily equivalent to an ideal unbiased
evaluation. To further eliminate system-induced biases, based on the analysis in Section 3.1, we
argue that a better option is to use Rt instead of Rc . This is because Rt , consisting of a randomized
data St , obviously contains better relative unbiasedness than Rc . Based on this idea, we formulate
a new ideal optimization objective function,

L�
πt−ideal (R

t , R̂c ) =
1

|D|
∑

(i, j )∈D
�
(
Rti, j , R̂

c
i, j

)
. (3)

This means that we can optimize Equation (3) as a better solution to the system-induced bias
problem. Equation (3) can also be seen as an efficient extension of the existing ideal optimization
objective functions when a randomized dataset is available. However, it is very difficult to directly
optimize Equation (3). On one hand, we have only a small part of the real feedback of Rt , that is,
St . On the other hand, although we have a non-randomized dataset Sc , we do not know the corre-
sponding feedback in Rt for these feedback data, that is, the state of a non-randomized dataset Sc
in Rt is unknown. In particular, we need to answer the following question: If the items in Sc are
randomly displayed, what will the feedback be like? This involves the concept of counterfactual,
which is recognized as a challenging problem [32]. To address this challenge, we will turn to de-
riving an upper bound of Equation (3) and propose a general debiasing framework based on upper

ACM Transactions on Information Systems, Vol. 41, No. 4, Article 108. Publication date: April 2023.



108:8 D. Liu et al.

Table 1. The Main Notations and Explanations

Symbol Meaning

St a randomized dataset
Sc a non-randomized dataset
Su the unobserved data
D the whole set of data, i.e., D = Sc ∪ St ∪ Su
Mc the recommendation model trained on a non-randomized dataset Sc
Mt the auxiliary model trained on a randomized dataset St
R∗ the complete feedback matrix under π∗, π∗ ∈ {πc ,πt }
R̂∗ the predicted label matrix ofM∗,M∗ ∈ {Mc ,Mt }

IS∗
the set of user–item pair indices contained in the feedback data S∗,
where S∗ ∈ {Sc , St , Su }

L (Rt , R̂c ) the unbiased ideal loss function when a randomized dataset is available

LS∗ (·, ·)
the loss function defined on the set of user–item pair indices contained in
the feedback data S∗ with the size of the whole set as the denominator, i.e.,
LS∗ (·, ·) = 1

|D |
∑

(u,v )∈IS∗ � (·, ·)

LS∗
|S∗ | (·, ·)

the average loss function defined on the set of user–item pair indices contained

in the feedback data S∗, i.e., LS∗
|S∗ | (·, ·) = 1

|S∗ |
∑

(u,v )∈IS∗ � (·, ·)

bound minimization in which the upper bound of Equation (3) will be taken as a new optimization
objective function to drive a tractable solution.

4 THE PROPOSED METHOD

In this section, we first present some theoretical insights into debiased recommendation with a
randomized dataset. Our goal is to derive an upper bound of the ideal optimization objective function

in Equation (3) by extending the theory in [33] and use it as an alternative objective that can
be optimized directly. Note that, in practice, we need to specify the type of loss function � in
this optimization objective, and we refer to the objective function having a specific form as the
unbiased ideal loss function in the following. Different types of loss functions satisfy different prior
constraints and have different effects on theoretical insights. Therefore, in order to be compatible
with as many types of loss function as possible, we propose two corresponding upper bounds
when the adopted loss functions � satisfy triangular inequality (in Section 4.1.1) and separability
(in Section 4.1.2), respectively. Then, we discuss the generalization error bounds to clarify the key
factors. Finally, we give a detailed description of the proposed method, DUB. Note that unless

otherwise specified, we abbreviate L�
πt−ideal (R

t , R̂c ) as L (Rt , R̂c ) in the following for brevity. For

ease of reference, the main notations in theoretical analysis are listed in Table 1.
In order to emphasize a confusing notationLS∗ (·, ·), we further describe the difference between
LSc (Rc , R̂c ), LSc (Rc , R̂t ), and LSc (Rt , R̂t ) as an example. By definition, LSc (Rc , R̂c ) denotes a loss
function defined on the set of user–item pair indices contained in the feedback data Sc . Therefore,
the true labels used in this loss function are the corresponding part of Rc on the specific user–item
pair index set ISc . Obviously, the true labels at this time are the feedback labels of a non-randomized
dataset Sc . Similarly, the predicted labels used in the loss function are the predicted outputs of the

recommendation model Mc for each sample in a non-randomized dataset Sc . For LSc (Rc , R̂t ), the

ACM Transactions on Information Systems, Vol. 41, No. 4, Article 108. Publication date: April 2023.



Bounding System-Induced Biases in Recommender Systems 108:9

true labels used are also the feedback labels of a non-randomized dataset Sc , but the predicted

labels used are changed to the part of R̂t on the specific user–item pair index set ISc , that is, the
predicted outputs of the auxiliary model Mt for each sample in a non-randomized dataset Sc . In
particular, for LSc (Rt , R̂t ), the true labels used in the loss function are changed to the part of Rt

on the specific user-item pair index set ISc . Obviously, as described in Section 3.1, we cannot know
the true labels of this part of the feedback data in practice, that is, it cannot be optimized directly
using the supervision information.

4.1 Theoretical Analysis

4.1.1 A Generalization Error Bound with Triangle Inequality. Similar to most works using the
upper bound minimization framework [8, 33], we first consider the case in which the adopted
loss function � satisfies the triangle inequality, for example, the 0-1 loss and l1-norm [13, 16]. In
Proposition 4.1, we first derive a simple upper bound on Equation (3) based on this prior constraint.

Proposition 4.1. Assume that the loss function � obeys the triangle inequality. Then, for any given

predicted label matrices R̂t and R̂c , the following inequality holds.

L
(
Rt , R̂c

)
≤ LSt

(
Rt , R̂c

)
+ LSc

(
Rt ,Rc

)
+ LSc

(
Rc , R̂c

)
+ LSu

(
Rt , R̂t

)
+ LSu

(
R̂t , R̂c

)
.

Proof.

L
(
Rt , R̂c

)
= LSt

(
Rt , R̂c

)
+ LSc

(
Rt , R̂c

)
+ LSu

(
Rt , R̂c

)
≤ LSt

(
Rt , R̂c

)
+ LSc

(
Rt ,Rc

)
+ LSc

(
Rc , R̂c

)
+ LSu

(
Rt , R̂t

)
+ LSu

(
R̂t , R̂c

)
,

where Su denotes the set of unobserved feedback, that is, D = Sc ∪ St ∪ Su , LS∗ (·, ·) =
1
|D |
∑

(u,v )∈IS∗ � (·, ·), and S∗ ∈ {Sc , St , Su }. We first divide Equation (3) into a summation of three

disjoint subsets, and apply the triangle inequality to LSc (Rt , R̂c ) and LSu (Rt , R̂c ). Note that, as
described in Section 3.1, the disjoint properties of Sc and St are ensured during the data collection
phase. �

The fourth term in Proposition 4.1 is difficult to solve because we know the true labels of only
a small part of Rt , that is, St , but not the true labels of Rt on the specific user–item pair index set
ISu . Therefore, through Hoeffding’s inequality [12], we convert it into an easy-to-solve alternative
and further analyze the generalization error bound of the unbiased ideal loss function.

Theorem 4.2 (Generalization Error Bound of Unbiased Ideal Loss I). Assume that two pre-

dicted matrices R̂t and R̂c are given, and a loss function � obeys the triangle inequality and is bounded
by a positive constant Δ. Then, for any finite hypothesis space of predictionsH = {R̂t1, . . . , R̂t|H | }, and
for any η ∈ (0, 1), the ideal loss L (Rt , R̂c ) is bounded with probability 1 − η by:

L
(
Rt , R̂c

)
≤ LSt

(
Rt , R̂c

)
︸���������︷︷���������︸

(a)

+LSc
(
Rt ,Rc

)
︸���������︷︷���������︸

(b )

+LSc
(
Rc , R̂c

)
︸���������︷︷���������︸

(c )

+ LSu
(
R̂t , R̂c

)
︸����������︷︷����������︸

(d )

+LSt
|St |
(
Rt , R̂t

)
︸�����������︷︷�����������︸

(e )

+bias
(
LSt
|St |
(
Rt , R̂t

))

+
Δ

|St |

√
|D|
2

log

(
2 |H |
η

)
, (4)

where bias (LSt
|St | (R

t , R̂t )) = LSu (Rt , R̂t ) − E[LSt
|St | (R

t , R̂t )] is the error term caused by using

E[LSt
|St | (R

t , R̂t )] to replace LSu (Rt , R̂t ), and LSt
|St | (R

t , R̂t ) = 1
|St |
∑

(i, j )∈St �(R
t
i, j , R̂

t
i, j ).
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Proof. Our goal is to use the easy-to-solve term (e ) in Equation (4) to replace the fourth difficult-
to-solve term in Proposition 4.1, and obtain the approximate error term corresponding to this
operation.
First, we have the following equation:

LSu
(
Rt , R̂t

)
= LSu

(
Rt , R̂t

)
− E

[
LSt
|St |
(
Rt , R̂t

)]
+ E

[
LSt
|St |
(
Rt , R̂t

)]
= E

[
LSt
|St |
(
Rt , R̂t

)]
+ bias

(
LSt
|St |
(
Rt , R̂t

))
. (5)

Using Hoeffding’s inequality and union bounds to make a uniform convergence argument, we get
that

P
(���E [LSt

|St |
(
Rt , R̂t

)]
− LSt

|St |
(
Rt , R̂t

) ��� ≤ ϵ
)
≥ 1 − η

⇐ P �
�max
R̂t
h
∈H

���E [LSt
|St |
(
Rt , R̂th

)]
− LSt

|St |
(
Rt , R̂th

) ��� ≤ ϵ�	 ≥ 1 − η

⇔ P
�


�
⋃

R̂t
h
∈H

���E [LSt
|St |
(
Rt , R̂th

)]
− LSt

|St |
(
Rt , R̂th

) ��� ≥ ϵ
���
	
≤ η

⇐
|H |∑
h=1

P
(���E [LSt

|St |
(
Rt , R̂th

)]
− LSt

|St |
(
Rt , R̂th

) ��� ≥ ϵ
)
≤ η

⇐ |H | × 2 exp
(−2 |St |2 ϵ2
|D| Δ2

)
≤ η.

Solving for ϵ yields the bound

���E [LSt
|St |
(
Rt , R̂t

)]
− LSt

|St |
(
Rt , R̂t

) ��� ≤ Δ

|St |

√
|D|
2

log

(
2 |H |
η

)

⇒ E
[
LSt
|St |
(
Rt , R̂t

)]
≤ LSt

|St |
(
Rt , R̂t

)
+

Δ

|St |

√
|D|
2

log

(
2 |H |
η

)
. (6)

By combining Equations (5) and (6), we get the following inequality, which holds with a probability
of at least 1 − η:

LSu
(
Rt , R̂t

)
≤ LSt

|St |
(
Rt , R̂t

)
+

Δ

|St |

√
|D|
2

log

(
2 |H |
η

)
+ bias

(
LSt
|St |
(
Rt , R̂t

))
. (7)

Then, by combining Proposition 4.1 and Equation (7), the proof is completed. �

4.1.2 A Generalization Error Bound with Separability. Note that in recommender systems, some
widely used loss functions do not satisfy the triangular inequality, for example, the cross-entropy
loss and the mean square error. To further expand the optional range of the loss function, we
propose a new prior constraint on the loss function,

Definition 4.3 (Separability). A loss is considered to satisfy the separability if and only if the
following inequality holds:

L� (c,a) ≤ L� (b,a) + L� (c − b,a).
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Proof. As an example, we prove that the binary cross-entropy loss satisfies the separability, and
other loss functions can be checked in a similar process. Given a form of the binary cross-entropy
loss L� (y, ŷ) = − [y log ŷ + (1 − y) log(1 − ŷ)] , where y ∈ {0, 1}, we can derive that

L� (c,a) − L� (b,a) = − [c loga + (1 − c ) log(1 − a)] + [b loga + (1 − b) log(1 − a)]
= − [(c − b) loga − (c − b) log(1 − a)]
≤ − [(c − b) loga − (c − b) log(1 − a)] − log(1 − a)
= − [(c − b) loga + (1 − (c − b)) log(1 − a)]
= L� (c − b,a).

The inequality conversion in the process can be obtained because of the non-negativity of− log(1−
a), where 0 ≤ a ≤ 1. Then, the binary cross-entropy loss satisfies the separability. �

Based on the separability, similar to the proof process of Proposition 4.1 and Theory 4.2, we can
get Proposition 4.4 and Theory 4.5.

Proposition 4.4. Assume that the loss function � obeys the separability. Then, for any given pre-

dicted label matrices R̂t and R̂c , the following inequality holds.

L
(
Rt , R̂c

)
≤ LSt

(
Rt , R̂c

)
+ LSc

(
Rt − Rc , R̂c

)
+ LSc

(
Rc , R̂c

)
+ LSu

(
Rt − R̂t , R̂c

)
+ LSu

(
R̂t , R̂c

)
.

Proof.

L
(
Rt , R̂c

)
= LSt

(
Rt , R̂c

)
+ LSc

(
Rt , R̂c

)
+ LSu

(
Rt , R̂c

)
≤ LSt

(
Rt , R̂c

)
+ LSc

(
Rt − Rc , R̂c

)
+ LSc

(
Rc , R̂c

)
+ LSu

(
Rt − R̂t , R̂c

)
+ LSu

(
R̂t , R̂c

)
,

where we apply the separability to LSc (Rt , R̂c ) and LSu (Rt , R̂c ). �

Theorem 4.5 (Generalization Error Bound of Unbiased Ideal Loss II). Assume that two

predicted matrices R̂t and R̂c are given, and a loss function � obeys the separability and is bounded by
a positive constant Δ. Then, for any finite hypothesis space of predictions, H = {R̂c1 , . . . , R̂c|H | }, and
for any η ∈ (0, 1), the ideal loss L (Rt , R̂c ) is bounded with probability 1 − η by

L
(
Rt , R̂c

)
≤ LSt

(
Rt , R̂c

)
︸���������︷︷���������︸

(a)

+LSc
(
Rt − Rc , R̂c

)
︸����������������︷︷����������������︸

(b )

+LSc
(
Rc , R̂c

)
︸���������︷︷���������︸

(c )

+ LSu
(
R̂t , R̂c

)
︸����������︷︷����������︸

(d )

+LSt
|St |
(
Rt − R̂t , R̂c

)
︸������������������︷︷������������������︸

(e )

+
Δ

|St |

√
|D|
2

log

(
2 |H |
η

)
+ bias

(
LSt
|St |
(
Rt − R̂t , R̂c

))
. (8)

Proof. Our goal is to use the easy-to-solve term (e ) in Equation (8) to replace the fourth
difficult-to-solve term in Proposition 4.4 and obtain the approximate error term corresponding to
this operation.
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First, we have the following equation:

LSu
(
Rt − R̂t , R̂c

)
= LSu

(
Rt − R̂t , R̂c

)
− E

[
LSt
|St |
(
Rt − R̂t , R̂c

)]
+ E

[
LSt
|St |
(
Rt − R̂t , R̂c

)]
= E

[
LSt
|St |
(
Rt − R̂t , R̂c

)]
+ bias

(
LSt
|St |
(
Rt − R̂t , R̂c

))
. (9)

Using Hoeffding’s inequality and union bounds to make a uniform convergence argument, we
get that

P
(���E [LSt

|St |
(
Rt − R̂t , R̂c

)]
− LSt

|St |
(
Rt − R̂t , R̂c

) ��� ≤ ϵ
)
≥ 1 − η

⇐ P �
�max
R̂c
h
∈H

���E [LSt
|St |
(
Rt − R̂t , R̂ch

)]
− LSt

|St |
(
Rt − R̂t , R̂ch

) ��� ≤ ϵ�	 ≥ 1 − η

⇔ P
�


�
⋃

R̂c
h
∈H

���E [LSt
|St |
(
Rt − R̂t , R̂ch

)]
− LSt

|St |
(
Rt − R̂t , R̂ch

) ��� ≥ ϵ
���
	
≤ η

⇐
|H |∑
h=1

P
(���E [LSt

|St |
(
Rt − R̂t , R̂ch

)]
− LSt

|St |
(
Rt − R̂t , R̂ch

) ��� ≥ ϵ
)
≤ η

⇐ |H | × 2 exp
(−2 |St |2 ϵ2
|D| Δ2

)
≤ η.

Solving for ϵ yields the bound

���E [LSt
|St |
(
Rt − R̂t , R̂c

)]
− LSt

|St |
(
Rt − R̂t , R̂c

) ��� ≤ Δ

|St |

√
|D|
2

log

(
2 |H |
η

)

⇒ E
[
LSt
|St |
(
Rt − R̂t , R̂c

)]
≤ LSt

|St |
(
Rt − R̂t , R̂c

)
+

Δ

|St |

√
|D|
2

log

(
2 |H |
η

)
. (10)

By combining Equations (9) and (10), we get the following inequality, which holds with a
probability of at least 1 − η:

LSu
(
Rt − R̂t , R̂c

)
≤ LSt

|St |
(
Rt − R̂t , R̂c

)
+

Δ

|St |

√
|D|
2

log

(
2 |H |
η

)
+ bias

(
LSt
|St |
(
Rt − R̂t , R̂c

))
.

(11)

Then, by combining Proposition 4.4 and Equation (11), the proof is completed. �

4.2 Analysis of the Generalization Error Bounds

As suggested in Theory 4.2 and Theory 4.5, we list the corresponding explanation for each term
in the generalization error bounds. For different terms in the two generalization error bounds, we
use indexes 1 and 2 to denote the upper bound of the triangle inequality and the upper bound of
the separability, respectively. The two generalization error bounds are the same in terms (a), (c ),
and (d ), but are different in terms (b) and (e ).

(a) By definition, LSt (Rt , R̂c ) = 1
|D |
∑

(u,v )∈ISt �(R
t , R̂c ), that is, the predicted loss of Mc with

the size of the whole set as the denominator with regard to the true feedback labels on St .
(b.1) By definition, LSc (Rt ,Rc ) = 1

|D |
∑

(u,v )∈ISc �(R
t ,Rc ), that is, the difference between the true

feedback labels of policy πc and policy πt on the specific user–item pair index set ISc .
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(b.2) By definition, LSc (Rt − Rc , R̂c ) = 1
|D |
∑

(u,v )∈ISc �(R
t − Rc , R̂c ), that is, the predicted loss of

Mc with regard to the difference between the true feedback labels of policy πc and policy πt
on the specific user–item pair index set ISc .

(c) By definition, LSc (Rc , R̂c ) = 1
|D |
∑

(u,v )∈ISc �(R
c , R̂c ), that is, the supervised loss of Mc with

the size of the whole set as the denominator with regard to the true feedback labels on Sc .
(d) By definition, LSu (R̂t , R̂c ) = 1

|D |
∑

(u,v )∈ISu �(R̂
t , R̂c ), that is, the unsupervised loss between

Mt andMc on the specific user-item pair index set ISu .

(e.1) By definition, LSt
|St | (R

t , R̂t ) = 1
|St |
∑

(u,v )∈ISt �(R
t , R̂t ), that is, the supervised loss ofMt with

regard to the true feedback labels on St .

(e.2) By definition, LSt
|St | (R

t − R̂t , R̂c ) = 1
|St |
∑

(u,v )∈ISt �(R
t − R̂t , R̂c ), that is, the predicted loss of

Mc with regard to the prediction error ofMt on the specific user–item pair index set ISt .

Intuitively, the three common terms (a), (c ), and (d ) can be viewed as the supervised loss of
Mc on Sc and St , and the unsupervised alignment loss between Mc and Mt on Su , respectively.
Since they all have the corresponding supervision information, all three terms can be optimized
directly. Under the triangle inequality, term (b .1) can be seen as the difference between both Sc
and S ′c when Sc ’s corresponding feedback S ′c in Rt is known. Therefore, term (b .1) is a constant
that can be used to estimate the degree of difference between the two policies and is usually small
since the system-induced biases do not have an excessive effect on the user’s true preference. The
term (e .1) is the supervised loss ofMt itself on St and, thus, can also be optimized directly. Under
the separability, term (b .2) and term (c ) jointly adjust Mc ’s trade-off in the supervised loss on Sc .
Since we do not have the true feedback labels of Rt on the specific user–item pair index set ISc ,
we cannot optimize the term (b .2) directly. Fortunately, our experiments show that our method
still has a significant advantage even in its absence, and we leave its further processing as future
work. Similarly, term (e .2) and term (a) jointly adjust Mc ’s trade-off in the supervised loss on St .
Since the prediction error ofMt on the specific user–item pair index set ISt is available, term (e .2)
can also be optimized directly. In short, no matter which generalization error bound is satisfied
by the adopted loss function, we can improve the unbiased performance of the recommendation
model by simultaneously minimizing the terms (a), (c ), (d ), and (e ) in the generalization error
bound. Note that the last two terms in the generalization error bound as shown in Equation (4) are
the error terms that arise when we use the easy-to-solve term (e ) in Equation (4) to approximate
the fourth difficult-to-solve term in Proposition 4.1. Their values depend on the confidence of
this approximation process and are independent of the model. In particular, we can find that as
the size of a randomized dataset gradually increases, the values of these error terms gradually
decrease, whichmeans that the approximation operation is more reliable. It is expected that when a
randomized dataset is large, the training of themodel can benefitmore frommore reliable unbiased
information. The last two terms of another generalization error bound shown in Equation (8) have
similar properties.

4.3 Debiasing Approximate Upper Bound with a Randomized Dataset

Based on the analysis for each term of the generalization error bound in Section 4.2, we propose a
novel method called debiasing approximate upper bound (DUB) with a randomized dataset, which
aims to optimize the upper bound of the unbiased ideal loss function directly. Note that we use
the term “approximate upper bound” to distinguish it from the term “upper bound” since our DUB
considers the terms in Equation (4) (or Equation (8)) that can be optimized directly but not all of the
terms. Depending on the types of loss functions used, we have two types of objective functions to
be optimized. When the used loss function satisfies the triangular inequality, the optimization goal
is shown in Equation (12), which is to minimize a proxy of the upper bound shown in Equation (4).
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min
Wc ,Wt

LSt
(
Rt , R̂c

)
︸���������︷︷���������︸

(a)

+LSc
(
Rc , R̂c

)
︸���������︷︷���������︸

(c )

+LSt
|St |
(
Rt , R̂t

)
︸�����������︷︷�����������︸

(e .1)

+γ LSu
(
R̂t , R̂c

)
︸����������︷︷����������︸

(d )

+ λcReg (Wc) + λtReg (Wt) ,

(12)
where γ is the weight parameter of LSu (R̂t , R̂c ), andWc andWt denote the parameters ofMc and
Mt , respectively. Note that Reg(·) is the regularization term, and λc and λt are the parameters of the
regularization. Recall from the analysis in Section 4.2 that all of the terms that can be optimized
directly in the generalization error bound as shown in Equation (4) include the terms (a), (c ),
(d ), and (e .1). This corresponds to each optimization term in Equation (12). Note that since the
unsupervised loss ofMt andMc on Su may contain too much noise when the size of a randomized
dataset St is small, we introduce a weight parameter γ to control its influence. For the stability of
model training, we also include two regularization terms for the model parameters. An intuitive
explanation of Equation (12) is to use a non-randomized dataset Sc and a randomized dataset St
for the trade-off learning of Mc , and to further provide the unbiased information for Mc through
the imputation labels provided by Mt . Therefore, our DUB can be viewed as a combination of
sample-based debiasing distillation and label-based debiasing distillation defined in [20].

When the used loss function satisfies the separability, the optimization problem is shown in
Equation (13), which is to minimize a proxy of the upper bound shown in Equation (8).

min
Wc

LSt
(
Rt , R̂c

)
︸���������︷︷���������︸

(a)

+LSc
(
Rc , R̂c

)
︸���������︷︷���������︸

(c )

+LSt
|St |
(
Rt − R̂t , R̂c

)
︸������������������︷︷������������������︸

(e .2)

+γ LSu
(
R̂t , R̂c

)
︸����������︷︷����������︸

(d )

+ λcReg (Wc) .
(13)

Similarly, based on the analysis in Section 4.2, all of the terms that can be optimized directly in the
generalization error bound shown in Equation (8) include the terms (a), (c ), (d ), and (e .2). This
corresponds to each optimization term in Equation (13). For the same reason, we also introduce a
weight parameter γ and a regularization term for the model parameters. Note that no supervised
loss related to Mt is included in Equation (13). Thus, we introduce a regularization term only for
Mc . An intuitive explanation of Equation (13) is similar to Equation (12) except that Equation (13)
also includes an optimization term (i.e., term (e .2)) to enhanceMc ’s learning of St . This can make
the model more robust when the relative unbiasedness of a randomized dataset is not high, such as
being affected by business rules. Regardless of whether Equation (12) or Equation (13) is used, the
proposed method includes all of the terms that can be optimized directly as analyzed in Section 4.2.
Our method is a more sufficient optimization of the upper bounds, which is expected to further
improve performance.
However, in real applications, we observe an implied limitation of our method due to the large

difference in the number of non-uniform data Sc and the uniform data St . Since the scale of Sc is
usually much larger than that of St , this will lead to the inconsistency of training difficulty between
Mc and Mt , that is, Mt will converge faster. This asynchrony will have an undesirable effect on

the prediction alignment term, LSu (R̂t , R̂c ). Finally, the overall training is unstable. To alleviate
this problem, we first pretrain Mc and Mt . Subsequently, we refine the pretrained models again
according to the above loss function. The pseudo-code of DUB is shown in Algorithm 1.
Note that, similar to most existing debiasing methods, our DUB does not depend on a specific

model architecture when deploying or applying it in practice. The process of integrating our DUB
into any recommendation model is as follows. (1) After collecting a non-randomized dataset Sc
and a randomized dataset St , we pretrain a recommendation modelMc and an auxiliary modelMt

based on a traditional optimization objective function and an arbitrary recommendation model,
respectively (lines 1 and 2 of Algorithm 1). (2) In the model refinement stage, we need to modify
only the optimization objective function of these models to that of DUB in the training stage;
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according to the type of loss function used, we choose Equation (12) or Equation (13) as the new
objective function (lines 4–6 of Algorithm 1).

ALGORITHM 1: Debiased Upper Bound With a Randomized Dataset (DUB)

Require: A non-randomized dataset Sc and a randomized dataset St .
1: Train a pretrained recommendation modelMc based on a backbone model on Sc .
2: Train a pretrained auxiliary modelMt based on a backbone model on St .
3: Repeat

4: An auxiliary set Sa with the same size as the training sample is randomly sampled from the
unobserved feedback Su ;

5: Based on Sc , St , and Sa , use the pretrained Mc and Mt to calculate each loss term in Equa-
tion (12) or Equation (13) (according to the conditions satisfied by the adopted loss function);

6: Update the parameters of the recommendation modelMc .
7: Until convergence

5 ANALYSIS OF EXISTING METHODS

In this section, we will introduce and analyze some existing methods. In contrast to the proposed
method, we show that these methods optimize only some terms in the generalization error bounds
of the unbiased ideal loss function or optimize someweak proxy of these terms, that is, they provide
insufficient optimization of the generalization error bound. This means that these methods may
converge to only a suboptimal solution. Note that insufficient optimization for the generalization
error bound is different from a more compact generalization error bound. The former means that
the model considers only some optimization items and ignores the constraints on some optimiza-
tion items during the training process. This may lead to the fact that although some optimization
terms are gradually minimized, the generalization error bound may be unchanged, and even grow
in reverse, due to the gradual increase in the loss of the neglected optimization terms. The latter
means that it is closer to the ideal optimization objective function than the other generalization
error bounds.

5.1 Causal Embeddings

Causal Embeddings (CausE) [35] is pioneering work in counterfactual recommendation. By in-
troducing causal inference into the representation learning of recommendation, CausE is imple-
mented in a multi-task learning framework, including a treatment task loss (Mc ’s own supervised
loss), a control task loss (Mt ’s own supervised loss), and a regularizer between tasks (the parameter
alignment terms ofMc andMt ). The loss function of CausE can be written as follows,

min
Wc ,Wt

LSc (Rc , R̂c )︸��������︷︷��������︸
(c )

+LSt (Rt , R̂t )︸��������︷︷��������︸
(e .1)

+ λcReg (Wc) + λtReg (Wt) + γ
CausE
tc ‖Wt −Wc ‖F︸�����������︷︷�����������︸

(d)

,
(14)

where γCausEtc is the weight parameter of the alignment term betweenMc andMt .
By comparing Equation (14) with Theory 4.2, the objective function of CausE can be regarded

as a combination of term (c ), term (e .1), and a proxy of term (d ) (‖Wt −Wc ‖F ). Similarly, in
comparison with Theory 4.5, it can be regarded as a combination of term (c ) and a proxy of term
(d ). This means that CausE is an insufficient optimization of the generalization error bound. In
addition, we find that the parameter alignment term may not be a reasonable proxy for the term
(d ): (1) The parameter alignment term restricts the parameters of Mc and Mt to have the same
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dimension. However, in view of the difference in data scale between Sc and St , this constraint may
be too strong. (2) The alignment of the parameters will cause difficulty in training in the case of
high dimensions and multi-layer networks. The lack of optimization for terms (a) and (e .2) will
also result in CausE not being able to make Mc fully benefit from St during training, especially
when St has a particularly small scale.

5.2 Bridge Strategy

Recently, Liu et al. explained and resolved counterfactual recommendation from the perspective
of knowledge distillation [20]. They propose a general knowledge distillation framework for coun-
terfactual recommendation and list some practical solutions as examples. The Bridge strategy is
one of these solutions with the best performance, which also best matches our focus. The Bridge
strategy first ensures the supervised loss ofMc andMt . In addition, an auxiliary set Sa is randomly
sampled from D in each iteration, and the predictions of Mc and Mt in Sa are constrained to be
close. Note that most of Sa belongs to Su because of the data sparsity in recommender systems.
The loss function of the Bridge strategy can be rewritten as follows,

min
Wc ,Wt

LSc (Rc , R̂c )︸��������︷︷��������︸
(c )

+LSt (Rt , R̂t )︸��������︷︷��������︸
(e .1)

+γLSa (R̂t , R̂c )︸��︷︷��︸
(d )

+ λcReg(Wc) + λtReg(Wt).
(15)

By comparing Equation (15) with Theory 4.2, the objective function of Bridge can be regarded
as a combination of terms (c ), (e .1), and (d ). Similarly, in comparison with Theory 4.5, it can
be regarded as a combination of terms (c ) and (d ). This means that the Bridge strategy is also an
insufficient optimization of the generalization error bound. However, it optimizes term (d ) directly
instead of using a weak proxy and, thus, achieves a better performance in the experiments [20].
Similarly, the lack of optimization for terms (a) and (e .2) can also cause Bridge to fail to makeMc

fully benefit from St in some cases.

5.3 Remarks

Note that our discussion does not include another recent method, AutoDebias [7], in which meta-
learning is introduced into a doubly robust (DR) framework to learn better unbiased parameters.
On one hand, it can be seen as an improvement in the training process rather than in the loss
function, which is different from our DUB as well as the existing methods mentioned earlier. On
the other hand, the DR framework is also a representative method in another route without a ran-
domized dataset [10, 40], that is, a randomized dataset is not necessary. Therefore, it is difficult to
put it into a specific category. Theoretical insights on debiased recommendation are also provided
in [7], which are quite different from our DUB, however. The authors aim to analyze the theoreti-
cal generalization error bound of AutoDebias, whereas we directly optimize a proxy of the upper
bound derived from the unbiased ideal loss function in Equation (3).

6 EMPIRICAL EVALUATION

In this section, we conduct experiments with the aim of answering the following five key questions.
The source codes and results are available at https://github.com/dgliu/TOIS_DUB.

• RQ1: How does the proposed method perform against the baselines in an unbiased
evaluation?
• RQ2: What is the role of the additional terms in the loss function of the proposed method
(i.e., the ablation studies of our DUB)?
• RQ3: What impact does the proposed method have on the item distribution of the recom-
mendation lists?
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Table 2. Statistics of the Datasets

Yahoo! R3 Product

#Feedback P/N #Feedback P/N

Sc 311,704 67.02% 4,798,776 12.97%
St 5,400 9.05% 34,755 0.99%
Sva 5,400 9.31% 34,755 0.75%
Ste 43,200 9.76% 278,043 0.88%

P/N denotes the ratio between the numbers of positive and

negative feedback.

• RQ4: How do some key factors affect the performance of the proposed method?
• RQ5: How does the proposed method perform against the baselines in a general biased
evaluation?

6.1 Experimental Setup

6.1.1 Datasets. To evaluate the performance of the model in an ideal unbiased scenario, we
need to use a dataset containing a randomized subset. We thus use the following two datasets in
the experiments; the statistics are shown in Table 2.

• Yahoo! R3 [26]: This is the most commonly adopted standard dataset in previous works,
including a user subset and a random subset. The former can be regarded as being collected
under a stochastic recommendation policy, while the latter corresponds to a uniform policy.
We binarize the ratings via a threshold ϵ = 3, where a rating > ϵ is considered as a positive
feedback (Ri j = 1); otherwise, it is a negative feedback (Ri j = 0). The user subset is used as a
training set in a biased environment (Sc ). For the random subset, we randomly split the user-
item interactions into three subsets, including 10% for training in an unbiased environment
(St ), 10% for validation to tune the hyper-parameters (Sva ), and 80% for the test (Ste ).
• Product: This is a large-scale dataset for CTR prediction, which includes twoweeks of users’
click records from a real-world advertising system. The dataset contains two subsets: a subset
(Sc ) logged by several traditional ranking policies and a subset (St ) logged by a uniform policy
πt . To remove the effect of the position bias in our experiments, we filter out the samples at
positions 1 and 2. The dataset covers 217 displayed ads and more than two million users. To
get the training set, validation set, and test set from the uniform subset, we randomly split
the St subset using the same proportions as that for Yahoo! R3.

6.1.2 Backbones. The debiasing methods are usually model agnostic and are integrated into
some backbone models. To comprehensively evaluate generalization ability, we use two represen-
tative shallow and deep models as the backbone models in the experiments: matrix factorization
(MF) [15] and neural collaborative filtering (NCF) [11]. Similar settings can be found in previous
works [5, 33, 35, 42].

6.1.3 Baselines. For the basic model, it can be regarded as three variants according to the dif-
ferent data sources used: training only with a non-randomized dataset Sc , training only with a
randomized dataset St , and training with both data (i.e., Sc ∪ St ). We call the latter two variants
Unif and Combine in the experiments. For debiased recommendation models, we choose the rep-
resentative methods among the three lines summarized in Section 1. For the first line, the inverse
propensity score (IPS) [35] is one of the most classic methods, which thus also serves as one of

ACM Transactions on Information Systems, Vol. 41, No. 4, Article 108. Publication date: April 2023.



108:18 D. Liu et al.

Table 3. Hyper-parameters Tuned in the Experiments

Name Range Functionality

rank {50, 100, 200} Embedded dimension

λ
{
1e−5, 1e−4 · · · 1e−1

}
Regularization

γ
{
1e−5, 1e−4 · · · 1e−1

}
Loss weighting

our baselines. We adopt the naïve Bayes estimator in [35] to estimate the propensity score. For the
second line, a recent method AutoDebias is introduced, in which the information of a randomized
dataset is used more effectively by combining meta-learning strategies in a doubly robust frame-
work [7]. For the third line, as described in Section 5, CausE [5] and Bridge [20] are two important
baselines because they are the state-of-the-art methods that best match our focus.

6.1.4 Evaluation Metrics. We employ four evaluation metrics that are widely used in recom-
mender systems: precision (P@K), recall (R@K), the area under the ROC curve (AUC) and normal-
ized discounted cumulative gain (nDCG). We choose AUC as our main evaluation metric because
it is one of the most important metrics in industry and previous works on debiasing. We report
the results with K set to 5 and 10. The candidate items to be recommended for a user are from the
set of items that have not had interaction from the user.

6.1.5 Implementation Details. All methods are implemented on TensorFlow 1.2 [1] except Au-
toDebias, which refers to its official PyTorch [31] version. We use the Adam [14] optimizer and
cross-entropy loss in the experiments, that is, we choose Equation (13) as the optimization objec-
tive of the model. The learning rate is fixed as 1e−3. By evaluating the AUC on the validation data
Sva , we perform grid search to tune the hyper-parameters for the candidate methods. To avoid
over-fitting, we adopt an early stopping mechanism with the patience set to 5 times. The range of
the values of the hyper-parameters are shown in Table 3.

6.2 RQ1: Comparison Results of Unbiased Evaluation

We report the comparison results of the unbiased evaluation in Tables 4 and 5. For the Yahoo!
R3 dataset, as shown in Table 4, the proposed method outperforms all baselines in most cases
except on P@5 and R@5, for which NCF is used as the backbone model. We have the following
observations: (1) The baselines based on the use of a randomized dataset usually have a better
performance than the basic model but may suffer from a performance bottleneck in some cases.
(2) The performance of the baseline AutoDebias depends on the backbone model used, which may
be because the designed meta-learning strategy is mainly for low-rank models. (3) In contrast,
our DUB is relatively stable for different backbone models. For the Product dataset, as shown in
Table 5, the proposed method consistently outperforms all baselines on the AUC, and maintains
advantages on other metrics in most cases. We can get similar observations as that on Yahoo! R3.
Note that since the baseline AutoDebias has a prediction step for all of the unobserved samples, it
requires far more memory than that of a single GPU (e.g., 32G) and a specific parallelization. This
weakens its scalability, and we do not report its results. In general, our DUB is relatively stable for
datasets of different sizes.

6.3 RQ2: Results of Ablation Studies

As described in Section 4, the proposed method further improves performance by sufficiently
optimizing the upper bound of the unbiased ideal loss function. A key question is what the role of
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Table 4. Comparison Results of Unbiased Testing on Yahoo! R3

Method AUC nDCG P@5 P@10 R@5 R@10

MF 0.7282 0.0434 0.0059 0.0051 0.0207 0.0332
Unif-MF 0.5625 0.0291 0.0049 0.0041 0.0135 0.0245
Combine-MF 0.7357 0.0489 0.0073 0.0061 0.0243 0.0401

IPS-MF 0.7300 0.0407 0.0052 0.0054 0.0171 0.0344
AutoDebias-MF 0.7502 0.0691 0.0119 0.0104 0.0403 0.0683
CausE-MF 0.7285 0.0445 0.0059 0.0058 0.0192 0.0372
Bridge-MF 0.7376 0.0557 0.0099 0.0076 0.0308 0.0478

DUB-MF 0.7578∗ 0.0727 0.0128 0.0112 0.0438 0.0770

NCF 0.7245 0.0279 0.0029 0.0031 0.0089 0.0199
Unif-NCF 0.6050 0.0275 0.0043 0.0037 0.0113 0.0204
Combine-NCF 0.7268 0.0327 0.0032 0.0033 0.0092 0.0189

IPS-NCF 0.7273 0.0304 0.0036 0.0031 0.0111 0.0210
AutoDebias-NCF 0.7140 0.0385 0.0052 0.0047 0.0188 0.0333
CausE-NCF 0.7284 0.0287 0.0029 0.0033 0.0089 0.0210
Bridge-NCF 0.7367 0.0439 0.0056 0.0056 0.0192 0.0371

DUB-NCF 0.7421∗ 0.0491 0.0051 0.0058 0.0164 0.0390

The best results are marked in bold. AUC is the main evaluation metric. Note that ∗ indicates a
significance level p ≤ 0.05 based on two sample t-tests between the best and second best results.

the additional optimization terms is in our method. To answer this question, we conduct ablation
studies of the proposed method by removing certain terms. The results are shown in Tables 6
and 7. Note that after removing terms (a) and (e ), our DUB is equivalent to the Bridge strategy.
Thus, we do not remove more terms in the experiments. We can see that removing any term
will hurt the performance in most cases, and removing more terms results in worse performance.
There are some unexpected cases in Table 6, for example, when K takes a small value, the full
version with NCF as the backbone model has a slight disadvantage on a few metrics. This may
be due to the noise caused by considering only the AUC as the evaluation metric in parameter
tuning. In general, all terms in the proposed method can synergistically produce the greatest gain.

6.4 RQ3: Item Distribution of the Recommendation Lists

An interesting question concerns the difference between the distributions of the recommendation
lists of the proposed method and the baseline methods. To answer this question, we show in
Figure 3 the item distribution of the recommendation lists generated by different methods, in
which popular items are the 20% most frequent items in the training set and the rest are unpopular
items. Figure 3(a) is the distribution of a randomized dataset, fromwhich we can find that although
the probability of popular and unpopular items being recommended is even (e.g., popular items ac-
count for 20% of the total items and the probability of being recommended also accounts for 20%),
the utility (i.e., the probability of hit divided by the probability of being recommended) brought
by popular items is higher. This means that a practical ideal recommendation strategy may not
excessively pursue a balance between popular and unpopular items. Note that for the brevity of
the legend in the figure, we use the abbreviation Auto to refer to the baseline AutoDebias.
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Table 5. Comparison Results of Unbiased Testing on Product

Method AUC nDCG P@5 P@10 R@5 R@10

MF 0.7115 0.0434 0.0105 0.0103 0.0518 0.1017
Unif-MF 0.6372 0.0604 0.0148 0.0135 0.0737 0.1332
Combine-MF 0.7145 0.0526 0.0121 0.0113 0.0601 0.1111

IPS-MF 0.7274 0.0484 0.0115 0.0114 0.0568 0.1114
AutoDebias-MF - - - - - -
CausE-MF 0.7158 0.0470 0.0107 0.0114 0.0529 0.1119
Bridge-MF 0.7069 0.0438 0.0107 0.0104 0.0529 0.1022

DUB-MF 0.7374∗ 0.0729 0.0158 0.0155 0.0787 0.1537

NCF 0.7293 0.0616 0.0152 0.0131 0.0753 0.1299
Unif-NCF 0.6240 0.0557 0.0131 0.0132 0.0651 0.1307
Combine-NCF 0.7301 0.0674 0.0155 0.0142 0.0773 0.1410

IPS-NCF 0.7328 0.0616 0.0155 0.0126 0.0773 0.1249
AutoDebias-NCF - - - - - -
CausE-NCF 0.7351 0.0623 0.0158 0.0125 0.0789 0.1235
Bridge-NCF 0.7149 0.0628 0.0145 0.0126 0.0723 0.1255

DUB-NCF 0.7382∗ 0.0686 0.0165 0.0149 0.0851 0.1380

• Note: the placeholder ‘-’ means that the result is not reported because the memory space

required by this method exceeds that of the GPU used.

The best results are marked in bold. AUC is the main evaluation metric. Note that ∗ indicates a
significance level p ≤ 0.05 based on two sample t-tests between the best and second best results.

Table 6. Results of the Ablation Studies on Yahoo! R3

Method AUC nDCG P@5 P@10 R@5 R@10

DUB-MF 0.7578 0.0727 0.0128 0.0112 0.0438 0.0770

w/o term (e .2) 0.7500 0.0702 0.0113 0.0108 0.0377 0.0744

w/o terms (a) & (e .2) 0.7376 0.0557 0.0099 0.0076 0.0308 0.0478

DUB-NCF 0.7421 0.0491 0.0051 0.0058 0.0164 0.0390

w/o term (e .2) 0.7386 0.0438 0.0050 0.0051 0.0165 0.0320

w/o terms (a) & (e .2) 0.7367 0.0439 0.0056 0.0056 0.0192 0.0371

The best results are marked in bold. AUC is the main evaluation metric.

Combining Figures 3(b) and 3(c), we can observe the following. (1) MF, IPS, and CausE tend
to capture the recommendation patterns of popular and unpopular items similar to Figure 3(a),
but unreasonably displaying too many unpopular items may not provide much benefit and will
even cause user distrust. (2) AutoDebias can capture the utility information of popular items, but
it tends to overexpose the popular items, which may also hurt the user experience. Note that our
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Table 7. Results of the Ablation Studies on Product

Method AUC nDCG P@5 P@10 R@5 R@10

DUB-MF 0.7374 0.0729 0.0158 0.0155 0.0787 0.1537

w/o term (e .2) 0.7091 0.0453 0.0115 0.0105 0.0571 0.1039

w/o terms (a) & (e .2) 0.7069 0.0438 0.0107 0.0104 0.0529 0.1022

DUB-NCF 0.7382 0.0686 0.0165 0.0149 0.0851 0.1380

w/o term (e .2) 0.7284 0.0648 0.0162 0.0132 0.0806 0.1313

w/o terms (a) & (e .2) 0.7149 0.0628 0.0145 0.0126 0.0723 0.1255

The best results are marked in bold. AUC is the main evaluation metric.

Fig. 3. Item distribution and utility of a randomized dataset and different methods with Yahoo! R3.

results differ somewhat from those in [7]. As described in Section 6.1.1, during data processing, we
set the labels of positive and negative feedback to 1 and 0, respectively, to be compatible with the
prediction layers with a sigmoid activation. However, the labels for positive and negative feedback
in [7] are set to 1 and –1, respectively. (3) Our DUB keeps recommending popular items with high
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Fig. 4. The results of analysis of the key factors on Yahoo! R3, where (a) and (b) are considering that Sc has
different positive sample ratios and (c) and (d) are considering that St has different data sizes.

utility and carefully displays the unpopular items with a higher hit rate and achieves the highest
utility among unpopular items, that is, the DUB can more effectively weigh the use of information
between a randomized dataset and a non-randomized dataset.

6.5 RQ4: Analysis Results of Key Factors

We further analyze some key factors that may affect the performance of the methods. The first key
factor is the difference in the ratio of positive and negative samples between Sc and St . When Sc and
St are too different, the difficulty of training the model will greatly increase. However, when Sc and
St are too close, the assimilation will seriously damage the guiding role of St . In the experiments,
we fix the size of a subset sampled from Sc to be 135,000 to include as many positive samples
as possible. Then, we control this subset to contain a certain proportion of positive samples: we
randomly sample 135,000 ∗ ratio positive samples and 135,000 ∗ (1− ratio) negative samples from
Sc . We set this ratio to 10%, 30%, 50%, and 70%, respectively. Note that when 10% is taken, the
distribution of this subset is closest to that of St . From Figures 4(a) and 4(b), we find that our DUB
consistently outperforms all of the baselines in all cases.
The second key factor that may affect the performance of themodel is the size of St . As described

in Section 3.1, the scale and scope of St is much smaller than that of Sc . When the number of St
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Fig. 5. (a) Comparison results in general evaluation. (b) The cumulative hit probability of different methods

at the user level. Note that we use Yahoo! R3 in this study.

is smaller than a certain value, it can hardly guide Sc . By observing the performance trend of the
model under different sizes of St , we can have a preliminary understanding of this lower bound.
In the experiments, we keep the same data settings as the previous experiments, except that St is
randomly sampled according to a certain proportion to obtain a subset. We set this ratio to 10%,
30%, 50%, and 70%, respectively. From Figures 4(c) and 4(d), we find that our DUB is also stable and
accurate in all cases.

6.6 RQ5: Comparison Results of General Evaluation

Although using unbiased data for verification and evaluation is a promising choice, it also has some
limitations because it may not cover all users and items. We are also interested in the performance
of the proposed method and baselines in general evaluation with biased but high coverage, that
is, both validation and testing use the non-uniform data. In the experiments, we randomly divide
Sc according to the proportion of 5 : 2 : 3 to obtain a training set, a validation set, and a test set.
St is still used as the unbiased training set. We use the same settings in Section 6.1.5 to search
for the best values, except that the reference metric becomes nDCG because it is one of the most
adopted metrics in general evaluation. We can see from Figure 5(a) that our DUB and AutoDebias
show a significant improvement over the other baselines. This is reasonable because their ability
to capture the utility of popular items (as shown in Figure 3) can play a greater role in general
evaluation. We show in Figure 5(b) the cumulative hit probability of different methods at the user
level (i.e., the sum of the hit probabilities of the first x users), and find that introducing St in general
evaluation is beneficial to better learn the corresponding preferences of the users involved in St
(i.e., the first 5,400 users).

7 CONCLUSIONS AND FUTURE WORK

In this article, we propose a new debiased perspective based on directly optimizing the upper
bound of an ideal objective function to facilitate the introduction of some theoretical insights and
a more sufficient solution to the system-induced biases. We first formulate a new unbiased ideal
loss function to more fully reduce the data bias when a small randomized dataset is available and
then provide some theoretical insights about its upper bound. Moreover, we point out that most
existing methods can be regarded as insufficient optimization of the upper bound. In response, we
propose a novel method, debiasing approximate upper bound (DUB) with a randomized dataset, for
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a more sufficient optimization of the upper bound. Finally, we conduct extensive empirical studies
to show the effectiveness of the proposed method and explore the impact of some key factors that
may affect performance.
For future works, we will obtain different upper bounds of the unbiased ideal loss function in

different ways and comparatively evaluate them. We also plan to gain more theoretical insights on
other ways of using a randomized dataset in debiased recommendation. We are also interested in
exploring new techniques for debiased recommendation with only one non-randomized dataset
or multiple non-randomized datasets.
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