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TransCP: A Transformer Pointer Network for
Generic Entity Description Generation with

Explicit Content-Planning

Bayu Distiawan Trisedya, Jianzhong Qi, Haitao Zheng, Flora D. Salim, and Rui Zhang

Abstract— We study neural data-to-text generation to generate a sentence to describe a target entity based on its attributes.

Specifically, we address two problems of the encoder-decoder framework for data-to-text generation: i) how to encode a non-linear

input (e.g., a set of attributes); and ii) how to order the attributes in the generated description. Existing studies focus on the encoding

problem but do not address the ordering problem, i.e., they learn the content-planning implicitly. The other approaches focus on

two-stage models but overlook the encoding problem. To address the two problems at once, we propose a model named TransCP to

explicitly learn content-planning and integrate them into a description generation model in an end-to-end fashion. We propose a novel

Transformer-based Pointer Network with gated residual attention and importance masking to learn a content-plan. To integrate the

content-plan with a description generator, we propose a tracking mechanism to trace the extent to which the content-plan is exposed in

the previous decoding time-step. This helps the description generator select the attributes to be mentioned in proper order.

Experimental results show that our model consistently outperforms state-of-the-art baselines by up to 2% and 3% in terms of BLEU

score on two real-world datasets.

Index Terms—Knowledge base, natural language generation, entity description, content planning.
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1 INTRODUCTION

Natural language generation is an important and chal-
lenging task. In this paper, we study entity description gen-
eration from structured data (i.e., data-to-text generation),
which is essential for various applications such as question
answering [1], summarization [2], and knowledge graph
enrichment [3], [4]. Specifically, we aim to generate a de-
scription from a set of attributes A of a target entity; the
attributes are in the form of pairs of key and value, i.e.,
A = {〈k1; v1〉, 〈k2; v2〉, . . . , 〈kn; vn〉}, where kn is the key
of the attribute and vn is the value of the attribute.

Table 1 illustrates the input and output of the task. In this
example, the attributes are name, birth_place, etc., and
their values are "Keanu Reeves", "Beirut, Lebanon",
etc. Here, the attributes may have been extracted from a
table, which makes the task table-to-text generation [2], [5], or
a knowledge graph (KG), which makes the task RDF-to-text
generation [6], [7]. In table-to-text generation, the attributes
are extracted from a two-column table (e.g., Wikipedia
infobox) where the first column indicates the key and the
second column indicates the value of the attributes. In RDF-
to-text generation, the attributes are extracted by querying a
KG for RDF triples (i.e., 〈subject,predicate,object〉)
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TABLE 1: Data-to-text Generation.

Input

〈name; Keanu Reeves〉
〈birth_place; Beirut, Lebanon〉
〈occupation; actor〉
〈occupation; musician〉
〈birth_date; September 2, 1964〉
〈residence; California, U.S.〉
〈birth_name; Keanu Charles Reeves〉
〈citizenship; Canada〉
〈citizenship; United States〉

Output

"Keanu Charles Reeves (born

September 2, 1964, in Beirut,

Lebanon) is an American actor

who lives in California, U.S."

that contain the target entity as the subject. In both cases, the
input will form a star-shaped graph with the target entity as
the center of the graph, the attribute values as the points of
the star, and the attribute keys as the edges.

Recent studies propose end-to-end models by adapt-
ing the encoder-decoder framework. The encoder-decoder
framework is a sequence-to-sequence model that has been
successfully used in many tasks, including machine trans-
lation [8], text segmentation [9], sequence labelling [10],
and entity and relation extraction [11], [12]. There are two
problems to address in such a framework for description
generation from a set of attributes:

1. Encoding problem: How to capture the relationships
between the attributes in the input. The encoder in the
framework aims to compute the representation of the input
by computing an embedding (i.e., the vector representation)
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for each attribute. To compute the embeddings, the encoder
needs to capture the relationships between attributes, which
is challenging. This is because, as mentioned above, the set
of attributes and the target entity form a star-shaped graph.
There is no link between the attributes in the graph except
through the center node (i.e., the target entity). Capturing
the relationships between the attributes in this kind of
structure is non-trivial.

2. Ordering problem: How to decide the order of
attributes in the generated description. This problem is
closely related to two typical issues in neural text gener-
ation models: i) repetition (i.e., the same attribute is men-
tioned twice or more in the generated description); and
ii) incoherent text (i.e., close attributes, e.g., birth_date
and birth_place, are mentioned far away) [6], [13]. In
traditional text generation models, these issues are handled
by exploiting a content-plan. A content-plan is a reason-
able order of attributes in a well-organized sentence. For
example, 〈birth_name, birth_date, birth_place,

occupation, residence〉 is a content-plan for the out-
put sentence in Table 1. Exploiting content-plan in a neural
data-to-text generation model is understudied, particularly
in addressing the challenges to integrate content-planning
into an end-to-end text generation model.

Existing studies have not well addressed the above
problems. Early studies of neural data-to-text generation [5],
[14]–[16] linearize the input set of triples and use LSTM [17]
to encode the input, which is sub-optimal since there may
not be any sequential (linear) relationships between at-
tributes in a set. Other studies focus on developing a graph-
based encoder. For example, GraphWriter [18] uses Graph
Attention Networks [19] and Transformer [20] to capture the
relationships between attributes. These models do not ex-
ploit any content-planning mechanism, making them prone
to repetition and incoherent text errors. Meanwhile, recent
studies that exploit content-planning in description gener-
ation, such as those by Trisedya et al. [6], [21], are prone
to producing an overly generalized content-plan, because
their method learns the content-plan from the typical entity
orders in a corpus (e.g., Wikipedia articles) that may miss
the local context for different input graph.

Content-planning is also exploited by Pudupully et
al. [22] and Chen et al. [23], where two-stage models are
used instead of end-to-end ones. However, the two-stage
models are prone to error propagation between the stages
and may suffer from the attribute-missing error: the gen-
erated content-plan may miss one or more attributes that
should be mentioned in the description. Tree-PLAN [24]
uses a Hierarchical Attention Pointer Network [25] to gener-
ate a content-plan and uses a Tree-like encoding mechanism
to combine close attributes. To address the attribute-missing
error, Tree-PLAN appends the unselected attributes to the
end of the generated content-plan. This strategy is sub-
optimal since it spoils the content-plan.

We address the problems above by proposing TransCP, a
joint learning (and end-to-end) model with explicit content-
planning for description generation. To address the encod-
ing problem, we use a Transformer-based attribute encoder.
To address the ordering problem, we integrate content-
planning into description generation. We first propose a
novel Transformer-based Pointer Network with gated resid-

ual attention and importance masking to learn a content-plan
given a set of attributes. The gated residual attention aims
to exploit all the attention (all the multi-head attention in
all encoder layers) of the Transformer model and use such
attention signals as the Pointer Network. The importance
masking helps the Pointer Network avoid generating repet-
itive attributes by providing a signal on which attributes
have and have not been selected in previous time steps of
the content-plan generation process. The attributes selected
previously are given lower importance scores, while the
unselected ones are given higher scores. We further propose
a content-plan tracking mechanism to integrate the learned
content-plan into the description generator. This tracking
mechanism helps the Transformer-based decoder capture
the most salient attribute at each time-step of the description
generation phase in a proper order. It is achieved by using a
cross-attention layer between the learned content-plan and
the decoder state, which can track the attributes in a content-
plan that have been exploited in the previous decoder states.

Our proposed Transformer-based Pointer Network
model differs from the existing Hierarchical Attention
Pointer Network (HAN) [25] in two aspects. First, HAN
uses the decoder state to predict the pointer (i.e., the in-
put order), while our model follows the original Pointer
Network [26] and uses the attention weights to decide
the pointer. The attention weights are more appropriate
for computing the pointer since they provide supervision
signals for the decoder to learn the more important parts of
the input. In comparison, the decoder state (used by HAN)
is a combination of input representations weighted by the
attention, which contains noises when being used to predict
the pointer. Second, our model integrates all attention (the
multi-head attention in multiple layers) in the decoder with
our proposed gated residual attention. In contrast, HAN
only uses the signal from the last layer of the decoder to
make a prediction, which may not exploit all attentions.

Our contributions are summarized as follows:

C1: We propose TransCP, a jointly learned (and end-to-end)
model with explicit content-planning for description
generation. Our model handles both the encoding and
the ordering problems, which has not been achieved by
existing models.

C2: We propose a novel Transformer-based Pointer Net-
work to learn a content-plan given a set of attributes.
We propose gated residual attention and importance
masking mechanisms for the network to optimize the
attention computation and to avoid attribute repetition
in generated content-plan.

C3: We propose a tracking mechanism to seamlessly inte-
grate content-planning into the Transformer decoder,
which helps the decoder to effectively capture salient
attributes in a proper order based on a content-plan.

C4: We evaluate the proposed model over two real-world
datasets. The experimental results show that our model
consistently outperforms state-of-the-art models for
data-to-text generation [14], [18], [21], [22].

This paper is an extension of our previous conference
paper [27]. In the conference paper, we propose content-plan-
based bag-of-tokens attention to integrate the content-planner
with the text generator. This approach has three limitations.
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First, it treats the input attributes as a bag of tokens and
uses a simple linear transformation to encode them, which
may be sub-optimal in capturing the relationships between
attributes. Second, this approach uses LSTM as a Pointer
Network to learn a content-plan. LSTM may not be optimal
in handling a set of input attributes, because the attributes
may not be properly ordered. Third, this approach uses
a coverage mechanism to track the content-plan in the
description generator. It uses the accumulation of attention
weights from the previous decoding steps, which may not
accurately capture the actual decoding states.

In this journal extension, we substantially extend the
conference paper to address the limitations above. On the
encoder side, we substantially improve the Pointer Net-
work used in the previous model by proposing a novel
Transformer-based Pointer Network to learn a content-plan
(C2, detailed in Section 4.2). Together with this new model,
we propose a gated residual attention mechanism that op-
timizes the attention computation process based on multi-
head attentions and multi-layer attentions; we also propose
an importance masking mechanism that helps our model
avoid generating repeated attributes in the content-plan. On
the decoder side, we propose a new content-plan tracking
mechanism in the description generator to address the cov-
erage mechanism limitation (C3, detailed in Section 4.3). We
also conducted a comprehensive experimental study on our
new model, including comparisons with the state-of-the-art
data-to-text generation models (C4, detailed in Section 5).

2 RELATED WORK

2.1 Traditional Approach

Traditional approaches for text generation [28] consist of
three components: (1) a content-selector that selects the data
to be expressed, (2) a content-planner that decides the order of
the selected data to be mentioned, and (3) a surface-realizer
that generates the final output based on the content-plan.
Early studies on content-planning employed handcrafted
rules [29] or a machine learning model as a content clas-
sifier [30]. For sentence planning and surface realization,
early studies proposed template-based models [31], ma-
chine learning models using various linguistic features [32],
[33], ordering constrained models [34], and tree-based mod-
els [35]. These approaches use handcrafted rules or shallow
statistical models, which mostly cannot deal with unseen
and complex cases.

2.2 Neural Approach

Early efforts on neural data-to-text generation. Earlier
studies on neural data-to-text generation are driven by
the success of deep neural networks for natural language
processing – specifically, the success of the encoder-decoder
framework [36] for machine translation. Using the encoder-
decoder framework, Serban et al. [37] generated questions
from facts in a KG, while Wiseman et al. [38] generated
NBA game summaries. Mei et al. [39] proposed an aligner
model that integrates the content selection mechanism into
the encoder-decoder framework for generating weather
forecasts from a set of database records. Lebret et al. [2]
proposed a conditional language model for biography sum-
marization. Follow-up studies on biography summarization

employed the encoder-decoder framework. Sha et al. [14]
proposed a link-based attention model to capture the rela-
tionships between attributes. Liu et al. [14] proposed a field-
gating LSTM and dual attention mechanism to encode the
attributes and inter-attribute relevance.

The aforementioned efforts focus on adapting the
encoder-decoder framework for data-to-text generation. The
adaptation includes representing the input as a sequence
and using recurrent neural networks (e.g., LSTM [17]) as
the encoder. However, when the input is in the form of a
star-shaped graph, there may not be sequential relations in
the attributes. Thus, capturing the relationships between at-
tributes using such an adaptation is sub-optimal [40]. More-
over, Liu et al. [14] reported a decrease in the performance
of such an adaptation when experimenting on disordered
input. This confirms that simply linearizing the input in
data-to-text generation may fail the encoder capturing the
proper relationships between the attributes.

Improving the encoder to better capture the relation-
ships between attributes. As discussed in Section 1, one
of the problems in building an end-to-end neural data-to-
text generation is how to capture the relationships between
attributes properly. The original encoder-decoder model
uses an LSTM-based encoder, which may not properly
handle this problem. To address this problem, previous
studies propose to use more suitable encoders to exploit the
input structure. Marcheggiani et al. [41] applied a Graph
Convolutional Network [42] as the encoder to capture the
input structure. Trisedya et al. [6], [21] proposed a graph-
based encoder to exploit the input structure for generating
sentences from a knowledge base. Their model encodes
an input graph using a topological traversal. The traversal
algorithm requires further supervision signals from word-
entity embeddings to decide the entity mentioning order
in a sentence, which can be seen as an implicit content-
plan. However, the word-entity embeddings may be overly
generalized since they only reflect typical entity orders
learned from a corpus (e.g., Wikipedia articles). Hence, this
model is prone to ignoring the local context of the input.
Another recent work, GraphWriter [18], combines Graph
Attention Networks [19] and Transformer [20] to capture
the relationships between attributes.

Most data-to-text generation models above only focus
on the encoding problem. They are not designed to address
the ordering problem (i.e., they do not exploit any explicit
content-planning mechanism). Thus, these models are prone
to generating text with repeated and/or incoherent content
as discussed in Section 1.

Content-planning for neural data-to-text generation.
Recently, Puduppully et al. [22] proposed Neural Content
Planning (NCP), which is a two-stage model that includes
content-planning to handle disordered input. First, NCP
uses Pointer Network [26] as a content-planner. Then,
the generated content-plan is used as the input of the
encoder-decoder model (i.e., text generator) [36] to gener-
ate a description. This two-stage model suffers from er-
ror propagation between the content-planner and the text
generator. The generated content-plan may contain errors
(e.g., the attribute-missing error) that lead the text generator
to produce an incomplete description. Another model that
exploits content-planning is Tree-PLAN [24], which uses a
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Hierarchical Attention Pointer Network [25] to generate a
content-plan and uses a Tree-like encoding mechanism to
combine close attributes, e.g., birth date and birth place.
To address the attribute-missing error, Tree-PLAN [24] ap-
pends the unselected attributes to the ends of the gener-
ated content-plan. This strategy is sub-optimal because it
disrupts the content-plan and spoils the content-planning.

3 PRELIMINARY

We start with the problem definition. Let A be a set of n
attributes of an entity in the form of pairs of key and value
in any order, i.e., A = {〈k1; v1〉, 〈k2; v2〉, . . . , 〈kn; vn〉},
where kn is the key of an attribute and vn is the value of the
attribute. We consider A as the input and aim to generate a
sentence S = 〈t1, t2, . . . , tl〉 as the description of an entity,
where tl is a token at position l in the sentence. Table 1
illustrates the input and output of the task.

Most data-to-text generation models are built on top
of an encoder-decoder framework [14], [16], [38], [39]. We
first discuss the encoder-decoder framework [36] and its
limitation when generating text from a set of attributes.

3.1 Encoder-Decoder Framework

The encoder-decoder framework is a sequence-to-sequence
learning model that takes a variable-length input T and
generates a variable-length output T ′ where the length of
T and T ′ may differ. Typically, both the encoder and the
decoder use a recurrent neural network, such as LSTM.
The encoder reads each token of the input sequentially and
computes a hidden state of each token. The last token’s
hidden state represents a summary of the input sequence in
the form of a fixed-length vector (i.e., context vector c). The
decoder is trained to generate a sequence by predicting the
next token given the decoder’s previous hidden state and
the context vector c. This framework has been successfully
applied in machine translation [8] to translate a sequence of
words from one language to another.

In data-to-text generation, the encoder-decoder is used
to generate text (e.g., entity description) from structured
data (e.g., a set of attributes of an entity). Here, the encoder
learns to encode the attributes into a fixed-length vector
representation, which will be used as a context vector by the
decoder to generate a description. Unlike machine transla-
tion, in data-to-text generation, the input is a set instead of
a sequence, where the attributes may be randomly ordered
(i.e., disordered input). Simply linearizing the input may
not yield a proper order of the attributes. The encoder thus
may fail to capture the relationships between the attributes,
leading to an improper context vector.

Two other problems in using the encoder-decoder frame-
work for data-to-text generation are repetition and incoher-
ent text [6], [13] in the generated description. Repetition
refers to that the same attribute is mentioned twice or
more, and incoherent text refers to that close attributes, e.g.,
birth_date and birth_place, are mentioned in separate
sentences. These problems occur because the input is in the
form of a set of attributes, which does not contain informa-
tion about the correct order of these attributes. Hence, the
encoder cannot learn from the input and provide a proper

ordering signal for the decoder to generate an accurate
and concise target description. The two problems become
more challenging when there are attributes that have similar
values (e.g., name and birth_name) or an attribute has
multiple values (e.g., occupation).

Recently, the Transformer model achieves state-of-the-
art results in sequence-to-sequence modeling and has been
used to replace LSTM in the encoder-decoder framework.
In data-to-text generation, Transformer handles the encod-
ing problem via its attention-based encoding mechanism
to capture the relationships between attributes. Still, a
Transformer-based encoder-decoder framework is prone to
the problems of repetition and incoherent text. Next, we
detail our solution to address these limitations.

4 PROPOSED MODEL

4.1 Solution Framework

Figure 1 illustrates the overall solution framework. Our
framework consists of two components: a content-plan gen-
eration module and a description generation module.

In the content-plan generation module (content-planner,
Section 4.2), we propose a Transformer-based Pointer Net-
work to learn a content-plan, which is later used to help
the description generation module to highlight the salient
attributes in a proper order. This module consists of four
components:

1) An attribute encoder that encodes a set of attributes
using the Transformer encoder (Section 4.2.1).

2) A pointer generator that generates a sequence of in-
dexes (pointers) representing the order of attributes in
the description. For the pointer generator, we propose
a novel Transformer-based Pointer Network with gated
residual attention and multi-head dilation to handle the
multiple attention problem. We also propose impor-
tance masking to handle the repetition problems (Section
4.2.2).

3) A content-plan generator that generates the content-
plan based on the learned pointers (Section 4.2.3).

4) A content-plan encoder that encodes the learned
content-plan to be used in the description generation
module (Section 4.2.3).

In the description generation module (description gen-
erator, Section 4.3), we integrate the content-plan into the
Transformer decoder. We use the same Transformer encoder
as in the content-plan generation module that treats the
input (i.e., attributes) as a set of tokens. To integrate the
content-plan into the Transformer decoder, we use a content-
plan tracking mechanism by adding a cross-attention layer
between the learned content-plan and the decoder states.
This tracking mechanism traces attributes in a content-plan
that have been exposed in the previous decoder states and
helps our proposed decoder select the salient attributes con-
ditioned by the content-plan. Hence, it can provide a better
context (i.e., attention of salient attributes in an ordered
fashion) for each decoding time-step. We also apply the copy
mechanism [43] to handle the out-of-vocabulary problem.

4.2 Content-plan Generation

For the content-plan generation module, we propose a
Transformer-based Pointer Network to learn a content-plan
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Fig. 1: Overview of our proposed model. Our model has two main components: the content-plan generator (denoted
by the blue box) and the description generator (denoted by the green box). The red box is an attribute encoder based
on Transformer shared by the content-plan and description generators. It takes the attribute-tokens that consists of key-
value pairs of the attributes and the forward/backward positional encoding as input and learns the attribute-tokens
vector representation. The content-plan generator takes attribute-token representation as input and generates the expected
sequence of attributes (i.e. the content-plan). The description generator takes the attribute-token vector representation and
the content-plan as input and generates the target description. The grey boxes indicate the input (attribute-tokens) and
output (the expected content-plan and the expected final description) of the model.

given a set of attributes. We use the pairs of attributes
and content-plan from a given training dataset to train the
network. A Pointer Network uses an attention mechanism to
generate a sequence of pointers that represents the order of
attributes. Different from the original Pointer Network [26]
that uses LSTM to encode the input and generate the output,
our proposed Pointer Network is entirely based on the
Transformer model, which has its benefit and challenges (cf.
Section 4.2.2). The content-plan generation module consists
of four components, which are detailed next.

4.2.1 Attribute Encoder.

The attribute encoder takes a set of attributes
A = {〈k1; v1〉, 〈k2; v2〉, . . . , 〈kn; vn〉} as input. Here,
the value of an attribute may consist of multiple
tokens (i.e., vn = 〈v1n, v

2

n, . . . , v
j
n〉). We transform the

multiple tokens into a single token representation
and add positional encoding to maintain its internal
order. Thus, the attributes are represented as

A = [〈k1
1
, v1

1
, f1

1
, r1

1
〉, 〈k2

1
, v2

1
, f2

1
, r2

1
〉, . . . , 〈kjn, v

j
n, f

j
n, r

j
n〉]

where f j
n and rjn are the forward and reverse positions,

respectively. We call the quadruple of key, value, forward
and reverse position as attribute-token. The representation of
each attribute-token is computed as follows.

zk

j
n = tanh(Wkey[k

j
n;f

j
n; r

j
n] + bk) (1)

zv

j
n = tanh(Wval[v

j
n;f

j
n; r

j
n] + bv) (2)

x
j
n = tanh(zk

j
n + zv

j
n) (3)

where [; ] denotes vector concatenation, b denotes a bias
vector, and Wkey and Wval are learned parameters. Vectors
zk and zv represent the attributes’ key and value.

Capturing the relationships between attributes is an
essential task for the attribute encoder. By capturing these
relationships, the encoder can provide a signal that helps
the pointer generator to generate a correct content-plan, e.g.,
the encoder should capture that the attributes birth_date
and birth_place are closely related such that the pointer
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generator should put them closely in the generated content-
plan. To achieve this aim, we use the Transformer encoder
to encode the attribute-token as follows:

x = softmax

(

QaK
T

a√
d

)

Va (4)

Qa = [x1

1,x
2

1, ...,x
j
n]

T
WQa + bQa (5)

Ka = [x1

1,x
2

1, ...,x
j
n]

T
WKa + bKa (6)

Va = [x1

1,x
2

1, ...,x
j
n]

T
WVa + bVa (7)

where d is the dimensionality of the attribute-token
vector and W denotes learned parameters. The output
of the attribute encoder is the attribute-token vectors
x = [xa

1

1
,xa

2

1
, . . . ,xa

j
n] that contain rich information

about the relationships between attributes. These vectors are
used as context for the pointer generator and the description
generator since the attribute encoder is shared with the
description generation module (cf. Section 4.4).

4.2.2 Pointer Generator.

Given a sequence of attribute-token vectors
x = [xa

1

1
,xa

2

1
, . . . ,xa

j
n], the pointer generator aims

to generate a sequence of pointer-indexes I = [i1, . . . , ig] (g
is the number of attribute-tokens in the target content-plan).
Here, ig indicates an index that points to an attribute-
token. To this end, we propose a Transformer-based
Pointer Network. This model is different from the original
Pointer Network [26] as our model is fully based on the
Transformer, while the original one uses LSTM. We discuss
the challenges in building such a model and our solutions.

Multiple attention problem. A Pointer Network exploits
the encoder-decoder framework’s attention mechanism to
select attributes from the input set and arrange them as a
content-plan. The original Pointer Network uses a single
attention mechanism since it is built on top of an LSTM-
based encoder-decoder framework [36]. In the Transformer-
based encoder-decoder framework, there are multiple at-
tention mechanisms since it uses multi-head attention, and
the encoder and the decoder consist of multiple layers.
Different attention heads (and different layers) may high-
light different items in the input set, which may confuse
the pointer generator when selecting an item as its output.
These multiple attention mechanisms carry different impor-
tant information. It is challenging to integrate all of this
information to decide the selected item.

To address this challenge, we propose a gated residual
attention to aggregate all the attention information. The
aggregator takes two attention weights. The first is the
aggregated attention from the previous layer βl−1 (l denotes
the current layer), which serves as residual attention (this
is disabled for the first layer since there is no attention
computed by the aggregator yet). The second is the attention
from the pointer generator’s decoder state α (Eq. 8), which
is computed based on the previous output Qptr and the en-
coded input Kptr. Here, Qptr = lookup(x, [i1, i2, . . . , it−1]),
where t is the current pointer generator time-step and
lookup(·) is an embedding lookup function, while Kptr = x.
We update the attribute-token representation based on both
attention weights (Eqs. 9-10). Then, we merge these two
updates via a gating mechanism (Eqs. 11-12) to adaptively
aggregate the attention information in the current layer. To
compute the context vector uptr for the final attention, we
multiply the current decoder state dptr with the updated

attribute-token xptr, and then we use softmax to compute
the attention probability distribution (Eqs. 13-14).

α = softmax

(

QptrK
T

ptr√
d

)

(8)

x1 = α[xa

1

1,xa

2

1, ...,xa

j
n] (9)

x2 = β
l−1[xa

1

1,xa

2

1, ...,xa

j
n] (10)

patt = sigmoid([x1;x2]
T
watt) (11)

xptr = pattx1 + (1− patt)x2 (12)

uptr = d
T

ptrxptr (13)

îptr = β
l = softmax(uptr) (14)

Here, îptr is the pointer-index output probability distribu-
tion over the vocabulary (i.e., the attribute-token input), patt

is a soft switch to aggregate the current and the residual
attentions, and watt denotes learned parameters.

Note that the attention from the transformer decoder
consists of multi-head attention. To handle this issue, we
use two strategies. First, we propose to use multi-head
dilation, which gradually reduces the number of heads in
each layer so that the last layer of the decoder only uses a
single-head attention. This mechanism forces the decoder
to learn a single-attention from the multi-head attention
in multiple layers, which helps the aggregator integrate
it with the residual attention. Second, for each layer that
uses multi-head attention, we sum all the attention heads to
produce a single-attention used for updating the attribute-

token representations in the aggregator, i.e., α =
∑|h|

i=0
αi,

assuming h heads in a layer.
Repetition problem. Similar to the LSTM-based

encoder-decoder framework, the Transformer-based frame-
work is also subject to the repetition problem, i.e., generat-
ing multiple mentions of the same attribute in the output
sentence. We address this problem with a final goal to
generate a concise sentence as the entity description.

To alleviate the repetition problem, we propose an im-
portance masking mechanism. We use an importance mask,
which is a binary value that indicates whether an attribute
has been selected in the previous time-steps. This mask
serves as an additional signal to the pointer generator when
computing the context vector uptr. Hence, Eq. 13 is rewritten
as uptr = dT

ptrxptrmcov, where mcov is the importance mask.
The attributes that have been selected in the previous time-
steps will be given a very low attention score. They will not
be selected in the current time-step, which avoids repetition.

To learn the content-plan, the pointer generator is trained
to maximize the conditional log-likelihood:

p(Id | Ad) =
∑

g

j=m
∑

j=1

i
′
ptr,j,g · log îptr,j,g (15)

Lptr =
1

D

D
∑

d=1

− log p(Id | Ad) (16)

where (Ad, Id) is a pair of attributes and target pointer-
index (generated by finding the position of the attribute-
token of the target content-plan in the original input) given
for training, i′ is the matrix of target pointer-indexes over
the vocabulary, m is the number of attribute-tokens in the
input, g is the number of content-plan time steps, D is the
number of records in the dataset and Lptr is the objective
function of the pointer generator.
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4.2.3 Content-plan Generator and Encoder.

The pointer-index I is a sequence of indexes that refers to
the attribute-tokens x in a proper order. The content-plan
generator uses the pointer-index to rearrange the sequence
of attribute-tokens into a content-plan x′. In the content-
plan encoder, we use LSTM to encode the learned content-
plan x′ to capture the relationships between attributes in
the content-plan as it already has a proper order over the
attributes. The hidden states of the content-plan encoder
xcp = [xcp1

, . . . ,xcpg
] are forwarded to the text generator

to help its attention model select attributes in a proper order.

4.3 Description Generation

We adapt the Transformer decoder to generate entity de-
scriptions by integrating a content-plan. This integration
helps the decoder generate a concise description by follow-
ing the order of the attributes in the content-plan. The de-
coder takes three input: the attribute token representation x,
the content-plan representation xcp, and the text generator’

decoder state (the output of the previous timestep dl−1

desc).
The attribute-token representation x comes from the

attribute encoder (Section 4.2.1), which contains rich in-
formation about the relationships between entities. The
content-plan representation xcp comes from the content-
plan encoder (Section 4.2.3), where we use LSTM to capture
the sequential (i.e., the ordering) relationships between at-
tributes in the content-plan. The description generator state
ddesc comes from a self-attention layer between tokens (in
the target description) generated in the previous time-step.

The integration of the content-plan in the description
generator is done as follows. First, we use a cross-attention
between the content-plan and the description generator
state to update the content-plan representation to mark
the part of the content-plan that has been used in the
target description (Eq. 17). Next, we update the attribute-
token representation by using a cross-attention between the
attribute-token and the updated content-plan (Eq. 18). This
cross-attention is used to highlight the attributes to be se-
lected next based on the content-plan. We use a gated fusion
residual connection between the original and the updated
attribute-token representation (i.e., x and xat) (Eqs. 19-20).
This connection is used to automatically populate the two
representations by their weights (γ). Finally, we update the
description generator state using a cross-attention between
the generator state and the updated attribute-token (Eq. 21).
The updated generator state is used as a context vector cdesc

to predict the final output.

x
′
cp = softmax

(

(xT

cpW
1

Qd)(d
l−1

desc

T

W1

Kd)√
d

)(

d
l−1

desc

T

W
1

Vd

)

(17)

xat = softmax

(

(xTW2

Qd)(x
′
cp

T
W2

Kd)√
d

)(

x
′
cp

T

W
2

Vd

)

(18)

γ = sigmoid

(

Wfusion[x;xat]

)

(19)

x
′
at = γx+

(

1− γ

)

xat (20)

cdesc = softmax

(

(dl−1

desc

T

W3

Qd)(x
′
at
T
W3

Kd)√
d

)(

x
′
at
T

W
3

Vd

)

(21)

ddesc = woutcdesc (22)

Here, x′
cp, xat, and cdesc are the updated content-plan

representation, the updated attribute-token representation,
and the context vector of the current generator state, re-
spectively. W denotes learned parameters, and d is the
dimensionality of the hidden state.

Our proposed model differs from the existing entity
description generation models that also exploit content-
planning. Unlike the two-staged model by Puduppully et
al. [22], which only uses the content-plan as input for
the description generator, our proposed model combines
the content-plan and the original input (i.e., the attribute-
tokens) to compute the context vector of the current gen-
erator state. Using this mechanism, our model can reduce
the error propagation caused by incomplete content-plan
(i.e., the generated content-plan may miss some salient
attributes). Our model can recover the attribute-missing
error by referring to the original input. We also devise an
improved integration mechanism over the coverage mech-
anism presented in our previous conference version [27].
The coverage mechanism uses the accumulation of attention
weights from the previous decoding steps, which may not
accurately capture the actual decoding states (i.e., the actual
part of the target sentence that has been generated). In
contrast, our integration mechanism uses a cross-attention
between the learned content-plan and the description gen-
erator state. It captures the actual description generator state
more accurately than the coverage mechanism.

4.3.1 Description Generator Training.

The description generator aims to predict the next token
of the description conditioned on the current context vec-
tor of the generator cdesc. To handle the out-of-vocabulary
problem, we apply the copy mechanism [43]. We update the
probability distribution of the final vocabulary based on a
learned probability pdesc (Eq. 23), which is used to select be-
tween predicting the output from the predefined vocabulary
or the input token. Then, we combine the input attribute-
token attention probability and the probability distribution
of the predefined vocabulary as the final vocabulary proba-
bility distribution (Eq. 24).

pdesc = sigmoid

(

w
1

copy
T

cdesc +w
2

copy
T

ddesc

)

(23)

t̂ =

[

softmax(Vcdesc)pdesc;adesc(1− pdesc)

]

(24)

Here, t̂ is the output probability distribution over the final
vocabulary, ddesc is the previous description generator state,
adesc is the attention weight of the input, wcopy denotes
learnable parameters, and V is the hidden-to-output weight
matrix. The description generator is trained to maximize the
conditional log-likelihood:

p(Sd | Ad) =
∑

l

j=|V |
∑

j=1

t
′
l,j × log t̂l,j (25)

Ldec = − 1

D

D
∑

d=1

log p(Sd | Ad) (26)

L = Lptr + Ldec (27)
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where (Ad, Sd) is a pair of attributes and entity description
given for training, t′ is the matrix of the target token de-
scription over the final vocabulary V , l is number of output
time steps, D is the number of training samples, Ldec is the
objective function of the description generator, and L is the
overall objective function of our proposed model.

5 EXPERIMENTS

5.1 Dataset

We aim to generate a description of an entity from its
attributes where the attributes may be disordered. To handle
disordered input, we propose a model that performs joint
learning of content-planning and text generation. To train
such a model, we need labeled training data in the form of
triples of attributes, content-plan, and entity description.

Following Lebret et al. [2], we extract the first sentence
of a Wikipedia page of a target entity as the description.
Different from Lebret et al., who collected a specific type of
entities (e.g., Person), we do not restrict the type of entities
to be collected. We extract the attributes of a target entity
by querying Wikidata for RDF triples that contain the target
entity as the subject. In other words, we extract the direct
relationships of an entity that form a star-shaped graph.
We query the attributes from Wikidata instead of extracting
from Wikipedia infobox to avoid additional processing (e.g.,
HTML tag removal, normalization, etc.).

We use string matching to find the order of attributes
that are mentioned in the description as the content-
plan. First, for each matched attribute, we store their
position (index of the first character of the mentioned
attribute value) in the description. Then, we sort the
matched attributes based on their positions in ascending
order. The sorted sequence of the attribute names forms
a content-plan, e.g., for Table 1, the extracted content-
plan is 〈birth_name, birth_date, birth_place,

occupation, residence〉.
Our proposed model is trained to generate a description

from a set of attributes of a target entity, which includes
selecting salient attributes to be described. Since we auto-
matically extract the description from Wikipedia, the ex-
tracted description may contain information (i.e., entities)
not listed in the related extracted attributes, creating noises
in the dataset. This problem may be caused by the delayed
synchronization of a KG (i.e., the Wikipedia page has been
updated, but not the Wikidata records), which often occurs
on frequently updated information such as the current club
of a football player, the latest movie of an actor, etc. Hence,
to obtain high-quality data, we filter descriptions that con-
tain noises. First, we use a Named Entity Recognizer (we use
spaCy NER) to detect all entities in a description. Then, we
remove records in the dataset whose description contains
any entity that is not listed in the related extracted attributes.

The collected dataset contains 152, 231 triples of at-
tributes, content-plan, and description (we call it the
WIKIALL dataset). The dataset contains 53 entity types
with an average of 15 attributes per entity, and an average
of 20 tokens per description. For benchmarking, we also use
the WIKIBIO dataset [2], which contains 728,321 biogra-
phies from Wikipedia. The average number of attributes per
entity of WIKIBIO dataset is 19, and the average number of

tokens per description is 26. We split each dataset into train
set (80%), dev set (10%), and test set (10%).

We evaluate our model on the datasets above. The
attributes in WIKIALL are disordered since they are the
result of a query to Wikidata. The attributes in WIKIBIO are
practically ordered, i.e., the salient attributes are ordered by
their appearances in the target entity description but may
have noises (non-salient attributes) between them. To test
on disordered attributes of WIKIBIO dataset, we randomly
shuffle the attributes.

5.2 Experiment Settings

We implement our model 1 in TensorFlow and train it
on NVIDIA Tesla K40c. We use grid search to tune the
hyper-parameters. We select the embedding size from
[8, 16, 32, 64, 128], the hidden units for the networks from
[128, 256, 512], the dropout rate from [0.1, 0.3, 0.5], and the
learning rate from [1e−2, 1e−4]. The best hyper-parameter
settings are as follows. We use 512 hidden units for the
networks. We use 128, 64, and 8 dimensions of attribute
value token embeddings, attribute key embeddings, and
position embeddings, respectively. We use a 0.1 dropout
rate. We use Adam [44] with a learning rate of 1e−4.

5.3 Content-planner Evaluation

In this experiment, we aim to evaluate the effectiveness
of the neural content-planner. The evaluation protocol is
as follows. Given a set of attributes as input, the content-
planner aims to generate a content-plan. We take the gen-
erated content-plan and compute the precision, recall, and
Damerau-Levenshtein Distance (DLD). The precision indicates
the portion of the generated content-plan that is correct, i.e.,
the percentage of the attributes that belong to the actual
content-plan (ground truth) over all the attributes listed in
the generated content-plan. The recall indicates the portion
of the ground truth that is included in the generated content-
plan. Both the precision and the recall show how well the
content-planner selects salient attributes for the content-
plan. The DLD measures how well the content-planner
orders the selected attributes compared to the order of
attributes in the ground truth.

5.3.1 Tested Content-planners

There are three representative neural data-to-text generation
models that include content-planning (i.e., with a content-
planning stage). For this experiment, we take the content-
planner of these models for comparison with our proposed
content-planner. The first is GCP [21], which uses entity
order-aware topological traversal algorithms for content-
planning. The second is CovATT (the model proposed in our
previous conference paper) [27], which use an LSTM-based
Pointer Network to generate a content-plan. We refer to this
model as LSTM-PN. The last one is Tree-PLAN, which uses
Transformer-based Pointer Network [25]. We refer to this
model as Transformer-PN.

We further perform ablation tests to show the effective-
ness of the importance masking mechanism. For all the

1. The source code and data are available at: https://bitbucket.org/
bayudt/ent desc/src/master/TransCP/

https://bitbucket.org/bayudt/ent_desc/src/master/TransCP/
https://bitbucket.org/bayudt/ent_desc/src/master/TransCP/
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TABLE 2: Content-planner Comparisons (over three runs with random seeds).

Model
WIKIALL WIKIBIO (disordered) WIKIBIO (ordered)

Precision Recall DLD Precision Recall DLD Precision Recall DLD

GCP 42.24 ±.00 100.00 ±.00 26.15 ±.00 31.25 ±.00 100.00 ±.00 19.48 ±.00 30.47 ±.00 100.00 ±.00 19.54 ±.00

LSTM-PN 84.07 ±.32 71.45 ±.26 73.88 ±.43 72.45 ±.40 56.34 ±.32 54.59 ±.35 74.45 ±.26 60.35 ±.29 57.55 ±.24
+ masking 86.15 ±.24 74.35 ±.20 74.85 ±.28 74.25 ±.26 59.74 ±.25 56.77 ±.31 75.54 ±.21 63.25 ±.15 58.95 ±.26

Transformer-PN 87.14 ±.36 80.54 ±.23 78.14 ±.22 76.22 ±.25 64.55 ±.24 60.54 ±.18 76.35 ±.21 64.47 ±.15 60.58 ±.22
+ masking 88.76 ±.23 83.01 ±.21 80.33 ±.16 78.77 ±.15 67.57 ±.23 61.35 ±.28 79.05 ±.25 67.53 ±.24 61.02 ±.21

TransCP (Transformer only) 87.01 ±.42 80.23 ±.46 79.02 ±.26 76.74 ±.34 64.15 ±.42 60.12 ±.23 76.02 ±.32 64.13 ±.45 60.65 ±.33
+ gating 90.21 ±.32 84.51 ±.27 82.22 ±.24 81.24 ±.20 67.31 ±.25 63.32 ±.22 81.32 ±.32 67.54 ±.27 63.22 ±.15
+ masking 91.32 ±.24 85.45 ±.27 84.45 ±.29 82.37 ±.24 69.87 ±.24 65.24 ±.24 82.45 ±.26 69.77 ±.24 65.35 ±.28
+ dilation (proposed) 92.10 ±.15 85.61 ±.06 85.12 ±.12 83.15 ±.08 70.54 ±.14 66.35 ±.12 83.05 ±.10 70.33 ±.12 66.21 ±.06

content-planners based on Pointer Network (i.e., LSTM-
PN, Transformer-PN, and our proposed TransCP content-
planner), we test them with and without importance mask-
ing. For our proposed TransCP, we also test the gated resid-
ual attention and the head-dilation techniques presented in
Section 4.2.2.

5.3.2 Results

The results of content-planner comparisons are listed in
Table 2. GCP achieves 100% recall on all datasets but very
low precision and DLD scores. This is because it only
orders the attributes (with a topological traversal) without
filtering them. The non-salient attributes are still listed in the
resultant content-plan. Furthermore, the input of the task is
a set of attributes. This input forms a star-shaped graph. The
traversal algorithm used in GCP may not properly capture
the relationships between attributes in this kind of structure.

Table 2 also shows that the Transformer-based Pointer
Network models (i.e., the Transformer-PN and our pro-
posed model TransCP) outperform LSTM-PN. Moreover,
the Transformer-based Pointer Network models are order-
agnostic, as evidenced by their stable performance on both
the WIKIBIO ordered and WIKIBIO disordered datasets.
These results confirm that the Transformer model captures
the relationships between attributes in an input set better
than LSTM, especially when the input is disordered. Our
gated residual attention further improves the capability
of the Transformer-based Pointer Network models by ag-
gregating the attentions from multiple layers (and heads).
Overall, our TransCP model achieves the best DLD scores:
85.12, 66.35, 66.21 on WIKIALL, WIKIBIO disordered, and
WIKIBIO ordered datasets, respectively.

The ablation test results confirm the effectiveness of our
gating mechanism, importance masking and dilation strate-
gies. The gated residual attention substantially improves
the content-planner as it considers all attentions. The im-
portance masking strategy applied to the Pointer-Network-
based content-planner (i.e., LSTM-PN, Transformer-PN, and
our TransCP) gives one to two points of improvement in
the DLD score. Meanwhile, the dilation strategy provides
stable performance for TransCP, which is shown by a smaller
standard deviation of the performance scores of the model’s
multiple runs. The best dilation configuration is dividing
the attention head in half until only one attention head is
left (e.g., 8,4,2,1).

5.4 Description Generator Evaluation

Next, we compare the overall description generation perfor-
mance of our full TransCP model with five representative
data-to-text generation models. We use three evaluation
metrics, including BLEU [45], METEOR [46], and TER [47].

5.4.1 Models

We compare our TransCP with six representative data-to-
text-generation models:

• FGDA, which uses a field gating and dual attention
mechanism [14]. This model does not explicitly learn
content-planning.

• GraphWriter, which uses Graph Attention Networks
and Transformer to encode an input graph [18]. This
model does not explicitly learn content-planning.

• GCP, which uses an entity order-aware topological
traversal algorithm to encode an input graph [21]

• NCP, which is two-stage data-to-text generation
model [22]. The content-planner and the description
generation are learned separately.

• Tree-PLAN, which uses Hierarchical Attention Pointer
Network as the content-planner and Transformer as the
description generator.

• CovATT, which is the model proposed in our previous
paper [27]. It uses coverage mechanism to integrate the
content-plan and the description generator.

It is worth noting that all of these baseline models (in-
cluding our model TransCP) use copy mechanism [43], [48]
to handle the out of vocabulary as described in their papers.
We use the same vocabulary taken from the most frequent
20, 000 words in the training set for fair comparisons. We
rerun all the models using the code provided by the authors,
except for Tree-PLAN. For this method, we try our best to
re-implement the model based on the paper’s description.

5.4.2 Results

Table 3 shows the description generation performance. The
two models without explicit content-planning, FGDA and
GraphWriter, have lower performance than the other meth-
ods. FGDA has a substantial performance drop when run-
ning on the WIKIBIO disordered dataset. In comparison,
GraphWriter performs closer on both the ordered and disor-
dered datasets. These results confirm that the Transformer
model is more suitable to encode an input set than LSTM.
GCP performs content-planning via its entity order-aware
topological traversal algorithm. However, as discussed in
Section 5.3.2, it may fail to capture the relationships between
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TABLE 3: Description Generation Comparisons (over three runs with random seeds).

Model
WIKIALL WIKIBIO (disordered) WIKIBIO (ordered)

BLEU↑ METEOR↑ TER↓ BLEU↑ METEOR↑ TER↓ BLEU↑ METEOR↑ TER↓
FGDA 61.38 ±.23 42.78 ±.35 31.00 ±.22 40.00 ±.31 30.99 ±.28 54.76 ±.27 42.26 ±.33 31.76 ±.39 53.98 ±.15
GraphWriter 62.09 ±.28 43.99 ±.23 29.96 ±.22 41.91 ±.21 32.36 ±.38 54.35 ±.26 42.29 ±.25 32.56 ±.32 54.02 ±.24
GCP 62.38 ±.23 43.97 ±.40 29.44 ±.13 41.28 ±.19 32.37 ±.28 54.26 ±.19 41.25 ±.35 32.04 ±.20 54.67 ±.16
NCP 63.03 ±.18 44.09 ±.27 28.43 ±.11 42.89 ±.18 33.79 ±.14 52.97 ±.30 43.34 ±.18 33.76 ±.19 53.14 ±.17
CovATT 64.55 ±.17 45.02 ±.23 27.84 ±.15 44.43 ±.18 34.09 ±.18 51.81 ±.13 44.94 ±.21 34.25 ±.15 52.97 ±.17
Tree-PLAN 64.02 ±.18 45.82 ±.12 27.25 ±.30 45.01 ±.24 34.30 ±.17 51.29 ±.26 45.35 ±.11 34.54 ±.22 51.14 ±.23
TransCP (Transformer only) 63.20 ±.35 44.21 ±.32 28.05 ±.21 43.12 ±.31 33.69 ±.32 52.63 ±.32 43.54 ±.26 33.21 ±.24 52.87 ±.26

+ Copy mechanism 64.43 ±.23 45.24 ±.23 27.87 ±.25 44.42 ±.24 34.28 ±.27 52.17 ±.25 44.76 ±.24 34.21 ±.26 52.03 ±.28
+ Coverage mechanism 64.95 ±.24 45.98 ±.15 27.11 ±.12 45.02 ±.15 34.78 ±.13 51.85 ±.11 45.86 ±.13 34.95 ±.13 51.27 ±.11
+ CP tracking (proposed) 65.95 ±.10 46.56 ±.19 26.85 ±.15 45.92 ±.20 35.19 ±.14 51.09 ±.17 46.14 ±.16 35.40 ±.18 50.93 ±.18

TABLE 4: Human evaluation results.

Model Correctness Grammaticality Fluency

FGDA 2.51 2.58 2.54
GraphWriter 2.45 2.52 2.48
GCP 2.31 2.40 2.36
NCP 2.54 2.68 2.51
Tree-PLAN 2.60 2.57 2.46
CovATT 2.68 2.76 2.57
TransCP 2.72 2.74 2.65

attributes in a star-shaped graph, which affects the overall
model performance. It is slightly outperformed by Graph-
Writer on WIKIBIO ordered dataset.

Among the models with content-planning, NCP is the
one with a two-stage framework that separates the content-
planner from the description generator. It performs worse
than CovATT, Tree-Plan, and TransCP. This confirms that
the two-stage model is prone to error propagation between
the content-planner and the description generator.

Overall, TransCP achieves a consistent improvement
over the baselines, and the improvement is statistically
significant, with p < 0.01 based on the t-test of the BLEU
scores. We use MultEval to compute the p-value based on
an approximate randomization [49]. Our model achieves
higher BLEU scores than the baselines, which indicates that
our model generates descriptions with a better order of
attribute mentions. Moreover, the better (lower) TER scores
indicate that our model generates a concise description (i.e.,
following the content-plan). Compared with the two end-
to-end models CovATT and Tree-PLAN, TransCP achieves
better performance for two reasons. First, it has a better
content-planner than those of the other two models (cf. Sec-
tion 5.3.2). Second, it effectively integrates the content-plan
into the description generator with a tracking mechanism
that records the used content-plan in the previous time-
steps. In comparison, Tree-PLAN appends the attributes
that are not selected in the content-plan into the generated
content-plan as the input for the description generator,
which is sub-optimal.

Table 3 also shows the results for the ablation test
of our proposed TransCP decoder module. The copy and
content-plan tracking mechanisms further help our models
produce a better output. Specifically, the copy mechanism
helps in generating the (rare) entity names which are not
in the vocabulary. Meanwhile, the content-plan tracking
mechanism helps in producing a concise description, as
shown by the lower TER scores. In the ablation test, we also

compare the coverage mechanism proposed in our previous
conference paper [27] and the content-plan tracking mecha-
nism proposed in this extension. The result shows that the
new content-plan tracking mechanism helps improve the
model’s overall performance by roughly 1 BLEU score.

5.4.3 Human Evaluation.

Following Trisedya et al. [21], we conduct manual evalua-
tions on the generated descriptions using three metrics, in-
cluding correctness, grammaticality, and fluency. Correctness
measures the semantics of the generated description (i.e.,
containing wrong order of attribute mentions or not, e.g.,
"born in USA, New York"); grammaticality measures
grammatical and spelling errors; and fluency measures the
fluency of the output (e.g., containing repetitions or not). For
each metric, a score of 3 is given to an output that contains
no errors; a score of 2 is given to an output that contains one
error; and a score of 1 is given to an output that contains
more than one error. We randomly choose 300 records of
the WIKIALL dataset along with the output of each model.
We recruited six annotators who have studied English for
at least ten years and completed education in an English
environment for at least two years. The total time spent on
these evaluations is around 250 hours. Table 4 shows the
results of the human evaluation. The results are consistent
with those of the automatic evaluations, i.e., our proposed
model again achieves the best scores.

5.4.4 Discussion

We further perform experiments to study the impact of dif-
ferent content-plans on our proposed description generator
model. Table 5 shows some samples of this experiment.
Sample-1 shows the generated description using a gold
standard content-plan. In Sample-2, we remove a common
attribute birth_date from the content-plan to replicate
an incomplete content-plan. In this sample, the attribute
birth_date is included in the generated output, which
shows that our model can handle the attribute-missing error
in the generated content-plan.

Next, we examine whether the generated description fol-
lows the content-plan by removing a less common attribute
residence and replacing the attribute birth_name with
name in Sample-3 and Sample-4, respectively. We can see
that the generated output follows the content-plan. This
result shows that, in our model, the content-plan can be used
to intervene the description generation phase and control
what to be generated in the final output.
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TABLE 5: Descriptions generated with different content-plans. Output formatting (e.g., capitalization) are manually done
for readability.

Attribute set input:

〈name; Keanu〉, 〈name; Reeves〉, 〈birth_place; Beirut〉, 〈birth_place, Lebanon〉, 〈occupation;
actor〉, 〈occupation; musician〉, 〈birth_date; September〉, 〈birth_date;2〉, 〈birth_date;
1964〉, 〈residence; California〉, 〈residence; U.S.〉, 〈birth_name; Keanu〉, 〈birth_name;
Charles〉, 〈birth_name; Reeves〉, 〈citizenship; Canada〉, 〈citizenship; United〉, 〈citizenship;
States〉

1
Content-plan:

〈birth_name; Keanu〉, 〈birth_name; Charles〉, 〈birth_name; Reeves〉, 〈birth_date; September〉,
〈birth_date;2〉, 〈birth_date; 1964〉, 〈birth_place; Beirut〉, 〈birth_place, 〈occupation;
actor〉, 〈residence; California〉, 〈residence; U.S.〉

Output:
"Keanu Charles Reeves (born September 2, 1964 in Beirut, Lebanon) is an actor who lives

in California, U.S."

2
Content-plan:

〈birth_name; Keanu〉, 〈birth_name; Charles〉, 〈birth_name; Reeves〉, 〈birth_place; Beirut〉,
〈birth_place, 〈occupation; actor〉, 〈residence; California〉, 〈residence; U.S.〉

Output:
"Keanu Charles Reeves (September 2, 1964), was born in Beirut, Lebanon, is an actor

lives in California, U.S."

3
Content-plan:

〈birth_name; Keanu〉, 〈birth_name; Charles〉, 〈birth_name; Reeves〉, 〈birth_date; September〉,
〈birth_date;2〉, 〈birth_date; 1964〉, 〈birth_place; Beirut〉, 〈birth_place, 〈occupation;
actor〉

Output:
"Keanu Charles Reeves, who was born in September 2, 1964 in Beirut, Lebanon, is an

actor"

4
Content-plan:

〈name; Keanu〉, 〈name; Reeves〉, 〈birth_date; September〉, 〈birth_date;2〉, 〈birth_date;
1964〉, 〈birth_place; Beirut〉, 〈birth_place, 〈occupation; actor〉, 〈residence; California〉,
〈residence; U.S.〉

Output:
"Keanu Reeves (September 2, 1964) born in Beirut, Lebanon is an actor from California,

U.S."

6 CONCLUSIONS AND FUTURE WORK

We proposed an end-to-end data-to-text generation model
on top of a Transformer-based encoder-decoder framework.
Our model addresses two common problems in encoder-
decoder based models for data-to-text generation: input
encoding and output ordering. Our model employs joint
learning of content-planning and description generation to
reduce error propagation between the two components for
generating a description of an entity from its attributes. To
learn a content-plan explicitly, we propose a Transformer-
based Pointer Network with gated residual attention and
importance masking. To integrate the content-plan into the
description generator, we propose a content-plan tracking
mechanism that effectively captures salient attributes in an
order suitable for output generation. Experimental results
on content-plan generation and description generation show
that our model outperforms the competitors and achieves
the best scores in all metrics on the WIKIALL and WIK-
IBIO test datasets. Moreover, our model retains its high
effectiveness on disordered input and achieves a consistent
improvement over the competitors by up to 3%.

The proposed model requires training data in the form
of triples of attributes, content-plan, and description. Ex-
tracting a content-plan from a description manually could
be time-consuming. We bypass this issue by using string
matching to find the order of attributes in the description as
a content-plan. String matching may not capture the seman-
tic similarity between attributes and text. For example, in
Table 1, the extracted content-plan does not include attribute
citizenship since the string matching cannot capture the
similarity between United States and American. We
plan to address this issue using semantic similarity search
in future work.
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