
IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 2023 1

Learning Region Similarities via Graph-based
Deep Metric Learning

Yunxiang Zhao, Jianzhong Qi, Bayu D. Trisedya, Yixin Su, Rui Zhang, Hongguang Ren

Abstract—Region similarity learning plays an essential role in applications such as business site selection, region recommendation,

and urban planning. Earlier studies mainly represent regions as bags of points of interest (POIs) for region similarity comparisons,

which cannot fully exploit the spatial features of the regions. Recently, researchers propose to use deep neural networks to exploit

spatial features such as POI geo-coordinates and categories, which have produced more accurate and robust region similarity learning

results. However, many useful features such as the height and size of a POI, and the distance and relative importance between the

POIs, are still overlooked in these methods. To take advantage of such features, we propose to represent regions as graphs, where

nodes are POIs with rich features such as height, size, and hexagonal coordinates, while edges are the relationships between POIs

formulated by their road network distances. To capture POIs’ importance, we weigh them by their height and size. Since there is limited

availability of ground-truth region similarity data, we propose a contrastive learning-based multi-relational graph neural network

(C-MPGCN) for region similarity learning based on the graph representations. To generate data for model training, we propose a soft

graph edit distance (SGED) based algorithm to generate triples of similar and dissimilar graphs of a given graph (representing a given

region) based on the POI weights. Experimental results show that C-MPGCN outperforms the state-of-the-art methods for region

similarity learning consistently with an improvement of at least 8.6% and 9.4% in terms of MRR and HR@1, respectively.

Index Terms—Spatial Data Analysis; Region Similarity Learning; Graph Convolutional Network, Hexagonal Representation.

I

1 INTRODUCTION

Region similarity learning provides a way to transfer
knowledge from known regions to new (or unknown) re-
gions, which can facilitate applications such as business
site selection [1], point of interest (POI)/region recommen-
dation [2], [3], and urban planning [4], [5]. For example,
when the owner of a popular restaurant plans to expand
their business, region similarity learning can help identify
candidate regions for a new branch. This is done based on
the similarities between the regions of interest and the re-
gion within which the current restaurant locates. Intuitively,
similar regions may have similar business opportunities.
This reduces the number of regions to be considered, and
thus it facilitates the decision-making process.

Existing methods for region similarity learning are
mainly based on comparing the bags of POIs (e.g., POI
categories) that represent the input regions [6], [7]. These
methods have ignored the spatial relationships among the
POIs. For example, each of the two regions in Figure 1(a)
has a set of four POIs. Both sets have POIs from the same
four categories: health service, education, shopping, and
groceries. By using bags of POI categories, the two regions
will be considered the same [8]. However, the two regions
are actually different. Compared with the lower region in

• Yunxiang Zhao and Hongguang Ren are with Beijing Institute of Biotech-
nology, China. E-mail: zhaoyx1993@163.com; bioren@163.com

• Jianzhong Qi and Yixin Su are with The University of
Melbourne, Australia. E-mail: jianzhong.qi@unimelb.edu.au;
yixins1@student.unimelb.edu.au

• Bayu D. Trisedya is with Universitas Indonesia, Indonesia. E-mail:
bayudt@gmail.com

• Rui Zhang is with www.ruizhang.info, China. E-mail: rayteam@yeah.net

*Jianzhong Qi and Hongguang Ren are the corresponding authors.

50m

Hospital

Supermarket

BoutiqueSchool

50m

Supermarket
Hospital

Shopping
Mall

University

(a) (b)

Fig. 1. (a) Two regions with POIs of the same categories; (b) Histograms
of POI sizes (in square meters, m2) across New York City.

Figure 1(a), the POIs in the upper one are larger in size
(i.e., a hospital is usually much larger than a clinic) and are
spatially less distant from each other.

Recently, Liu et al. [1] propose a deep metric learning
method that considers POI geo-coordinates in addition to
POI categories, while Jin et al. [9] further capture the hi-
erarchical relationships between POI categories via convo-
lutional neural networks (CNNs). For example, a Japanese
restaurant and a Korean restaurant are considered the same
at a coarse-grained level that takes all dining places as
restaurants, while they are different at a fine-grained level
that differentiates dining places by their cuisines. However,
POI features such as height, size, and road network dis-
tance relationships among POIs have not been considered.
We summarize the limitations of existing region similarity



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 2023 2

learning methods as follows:

• Existing methods overlook many useful POI features
such as height and size for region similarity learning.
For example, in Figure 1(b), we show histograms of POI
of different sizes (in m2) in different regions across New
York City. We can see that similar POI size distribution
is a strong indicator of similar regions, e.g., regions A
and B in the figure are similar. They are both in urban
areas, which have many POIs with a small size (e.g.,
small shops).

• Existing deep learning-based region similarity learning
methods partition the map with a square-shaped grid of
a manually defined granularity. The POIs are encoded
by the IDs of the cells in which the POIs lie. Neigh-
boring POIs of similar Euclidean distances to a POI p
may have different cell ID offsets to that of p, due to the
square grid-based space partitioning (detailed in Sec-
tion 3.2). This may lead to a discriminative effect on the
neighboring POIs, especially for site selection applica-
tions. Moreover, the non-Euclidean relationships such
as the relative importance and road network distance
between POIs are important, which cannot be fully
captured either.

In this paper, we advance region similarity learning by
further exploiting the following POI features: (i) The non-
Euclidean relationships between POIs – we propose to use
a graph to represent a given region, where the POIs are
the graph nodes, and the edge weights are defined based
on the road network distance between the POIs. (ii) The
POI importance – we embed rich POI features that reflect
the POI importance such as height and size via an entropy-
based algorithm. The embedded features are used as node
features for the graph (region) embedding learning.

To learn the region representations, we propose a multi-
relational graph convolutional network (MPGCN) model.
MPGCN differentiates neighboring nodes of a target node
in different road network distance ranges during the ag-
gregation process, such that POIs in different road network
distance ranges contribute differently to the embedding of a
target POI. MPGCN further follows the DiffPool model [10]
and applies the pooling technique to learn representative
nodes from each GCN layer to be passed onto the next layer,
thus reflecting the relative POI importance in the learned
region representation.

Building upon MPGCN, we propose a triplet contrastive
learning-based neural network (C-MPGCN) for region sim-
ilarity learning. To train C-MPGCN, we need triples formed
by pairs of similar regions and dissimilar regions. Due to
the unavailability of such ground-truth data, we generate
training data by editing known regions. Given a region r to
be fed into C-MGGCN for similarity learning, we generate
a region similar to r and another region dissimilar to r.
We propose a graph edit distance-based measure named
soft graph edit distance (SGED) to apply “edits” on (the
POIs of) r. Different from the original graph edit distance
(GED), which measures the similarity between graphs, we
use SGED to guide the generation of similar and dissimilar
graphs. The SGED-based algorithm gives non-uniform edit
costs according to the importance and uniqueness of the
POIs related to an edit operation. Intuitively, a unique POI

in a region with a large size or height is more important in
learning the representation of a region, and editing such a
POI would make the resultant region less similar to the orig-
inal region than editing other less unique POIs. Moreover,
our SGED-based algorithm computes a fuzzy similarity
score rather than an exact one like GED, which helps reduce
the time complexity to generate our model training data. To
summarize, we make the following contributions:

• We are the first to use graph representation for region
similarity learning, where nodes are rich POI features
and edges represent road network distances between
POIs. We propose a variant of GCN named MPGCN to
learn region representations, which captures both POI
features and POI explicit/implicit relationships.

• We extend MGGCN with a triplet contrastive learning-
based model, named C-MPGCN, to learn to predict
region similarity. To generate training data for C-
MPGCN, we define SGED (an extension of GED) and
propose an SGED-based algorithm to generate similar
and dissimilar regions for a given region.

• We collect a dataset from New York City with 30,832
POIs, each of which has its category, geo-coordinates,
size, and height as the features. We will release this
dataset for public use. We run extensive experiments on
this dataset. The results show that C-MPGCN improves
the accuracy of similar region prediction consistently
with an improvement of at least 8.6% and 9.4% in terms
of MRR and HR@1, respectively.

We organize the rest of this paper as follows. We review
related work in Section 2 and detail the proposed C-MPGCN
model in Section 3. We report experimental results in Sec-
tion 4 and conclude the paper in Section 5.

2 RELATED WORK

We review existing studies on region similarity learning and
graph similarity learning, which are the foundations of our
proposed model.

2.1 Region Similarity Learning

In region similarity learning, the inputs are regions cropped
from a given map, and the aim is to compute the similarity
between two regions. Most existing works represent a re-
gion by aggregated attributes of the region, e.g., the number
of POIs (or POI categories) in the region. For example, Le et
al. [11] find that the earth mover’s distance between vector
representations of different regions is an effective measure to
compute similar regions. Shen et al. [12] measure the region
similarity by comparing the spatial feature vectors that con-
sist of both the POIs’ categories and their geo-coordinates
from the two regions. Liu et al. [8] further incorporate the
diversity and distribution of POIs when learning the region
similarities. Wang et al. [6] use POI features (e.g., category
and reviews) and taxi flow information for crime predictions
in different regions.

Recently, deep learning has been used for region simi-
larity learning. For example, Liu et al. [1] propose a CNN
model via a triplet-based [13] learning schema on the POI
category and geo-coordinates. Jin et al. [9] further consider
the hierarchical relationships of POI categories. There are



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 2023 3

Fig. 2. Structure of C-MPGCN (best view in color).

also works that learn region embeddings for downstream
tasks such as traffic accident risk forecasting and economic
growth prediction [14], [15], [16], where region features
are captured in a coarse-grained manner – each region is
represented as a graph node (instead of a graph as done
in our work), and each edge represents the relationship
between two different regions. These methods have not
exploited features such as POI height and size, which are
also important in region similarity comparison. Moreover,
they have not captured non-Euclidean relationships such as
road network distances and relative POI importance within
a specific region.

2.2 Graph Similarity Learning

To represent a region, we observe that not only the POIs
in a region but also their connectivities are important. The
network of POIs in a region motivates us to use graph
similarity learning for region similarity learning. Graph
edit distance (GED) [17] and maximum common subgraph
(MCS) [18] are widely used for measuring the similarities
between two graphs, because they are domain-agnostic [19].
In this paper, we focus on GED as MCS is a special case of
GED under a particular cost function [20], and MCS only
considers the structural changes of the graphs. Computing
the exact GED is NP-complete [21], and the state-of-the-
art algorithms cannot compute the exact GED within a
reasonable time for graphs with more than 16 nodes [22].

To tackle the computation complexity issue, existing
studies use pruning strategies [23], [24] or produce ap-
proximate GED in a fast and heuristic way [23], [25], [26].
These algorithms require complex design and implementa-
tion based on discrete optimization or combinatorial search.
Their time complexities are still polynomial or even sub-
exponential to the number of nodes in graphs [27], [28].
For example, Bougleux et al. [25] treat GED as a quadratic
assignment problem (QAP) of nodes in different graphs [29].
They adapt the integer projected fixed-point algorithm orig-
inally designed for QAP to compute an approximate GED
by finding a local minimum.

Recently, researchers transform graph similarity com-
putation into a learning problem [27], [30]. Bai et al. [27]
formulate graph similarity learning as a regression task,

where a GCN and attention layers are trained by precom-
puted GED scores. Li et al. [31] use graph neural networks
to learn graph embeddings and use a Graph Matching
Network (GMN) to compute graph similarity through cross-
graph attention-based matching. Wang et al. [32] map each
graph to an embedding vector independently, and they
compute graph similarity in the vector space. This enables
precomputing and indexing of the graph embeddings and
hence efficient retrieval of similar graphs using fast nearest
neighbor search data structures such as k-d trees [33]. How-
ever, the model training of methods above requires a large
volume of labeled data which is difficult to obtain.

3 PROPOSED MODEL

We first present an overview of C-MPGCN in Section 3.1,
followed by the region representation for similarity learning
in Section 3.2. We present the definition of SGED and the
SGED-based algorithm to generate similar and dissimilar
region triples for training C-MPGCN, and the details on POI
weighting in Section 3.3. We present the MPGCN module to
capture POIs’ road network distances and relative impor-
tance in Section 3.4.

3.1 Model Overview

Given a query region q and an area of interest D from a
map, we aim to return the most similar region r ∈ D of
q. For simplicity and to avoid the impact of region shape
and size, both q and r have the same circular shape and
are of the same radius µ. Such a region shape setting suits
the motivating application for business site selection, where
a region of a certain radius centered at a candidate site is
of interest when selecting a site for a new business. Note
that our model can be used to learn region similarity for
regions of arbitrary shape when such regions are available,
e.g., from algorithms that partitions the map into irregular
regions [34], [35], [36].

Since “region similarity” is a somewhat subjective con-
cept, and there is no universal definition for it, we take
a fuzzy approach and apply triplet contrastive learning
techniques to train a model named C-MPGCN to predict
region similarity. The basic idea of triplet contrastive learn-
ing is that, given a data sample of interest t, we fetch (or



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 2023 4

generate) a similar data sample (i.e., positive sample t+ and
a dissimilar data sample (i.e., negative sample t−). The triple
of data samples ït, t+, t−ð is fed into a neural network F for
training. A conditional function ||F (t) − F (t+)||

2
2 + ³ <

||F (t) − F (t−)||
2
2 is used for model training, which guides

F to yield embeddings between t and t+ that are closer (i.e.,
with a shorter distance in the embedding space) than the
embeddings between t and t− by a margin of ³ (a hy-
perparameter). Based on the conditional condition, the loss
function we use when training in a batch mode is:

L=
b

∑

i

max(||F (ti)−F (ti+)||
2
2+³−||F (t)−F (ti−)||

2
2, 0) (1)

where b denotes the number of triples in a batch.
In our triplet contrastive learning-based model C-

MPGCN, as shown in Figure 2, a region r is a data sample
of interest. For model training, given the map data of a
certain area, we randomly select a POI p from the given area.
The circular region centered at p with a radius of µ forms
r. We use a POI as a region center to suit the motivating
application of site selection, although our techniques apply
directly if a random point is used as the region center
instead. We extract all POIs in r to form a graph Gr of POIs
to represent r, where each graph node is a POI (detained in
Section 3.2) and the edges are defined based on road net-
work distances between POIs (detailed in Section 3.4). We
apply the proposed soft graph edit distance algorithms (de-
tailed in Section 3.3) to edit Gr to generate a positive sample
Gr+ and a negative sample Gr− . These graphs then go
through the proposed GCN variant MPGCN (detailed in
Section 3.4) to be mapped into an embedding space. The
embeddings produced by MPGCN are fed into the triplet
loss function (Equations 1) to compute the model loss and
obtain training signals for model parameter updates.

Once trained, given a query region q and an area of
interest D from a map, we can use MPGCN to generate
embeddings of q and any region in D. By comparing the
embedding difference (e.g., Euclidean distance) between q
and candidate regions in D, we can identify the region
that is most similar to q. A geographical region is a 2-
dimensional continuous space, which contains an infinite
number of regions and is infeasible to search. Instead of
using the brute-force method to enumerate all candidate
regions in D, we take each POI in D as the origin and crop
an area with a radius of µ to generate candidate regions, so
as to improve the efficiency.

3.2 Region Representation

We represent a region r as a graph Gr where every node is
a POI in r and every edge has a weight that represents the
road network distance between two POIs. Since Gr will be
fed into a GCN variant for embedding learning, the feature
vector of each node and the weight of each edge in Gr play
a critical role in the quality of the learned embedding. Next,
we detail the node (POI) features and edge weights of Gr .

Node features. Our feature vector for each POI p has 37
dimensions, where 30 dimensions (a one-hot embedding)
are used to represent the POI category obtained from Open-
StreetMap [37], [38] (cf. Table 1), two dimensions are for
POI longitude and latitude (integers), two dimensions are

x y 1 0

1 1

1 -10 -1-1-1

0 1-1 1

-1 0

(a) Cartesian

x
yz 1

0-1

1
-10

0
-11-1

01
-1
10 0

1-1
(b) Cube

Fig. 3. (a) Cartesian coordinate system, (b) Cube coordinate system.
The central cells are the cells that p lies in.

for POI height and size (floats) obtained from NYC Open
Data1, and the remaining are for POI hexagonal coordinates.

POI hexagonal coordinates. Existing deep learning-
based region similarity learning methods partition the map
into square-shaped grid cells with a manually defined gran-
ularity. The POIs are then encoded by the IDs of the cells that
contain the POIs. This may discriminate neighboring POIs
with similar Euclidean distances to a target POI, which is
inferior for applications such as site selection. As shown in
Figure 3a, suppose a target POI p lies in the center cell, and
the cell IDs are the row and column numbers of the cells.
POIs in the surrounding cells may have similar Euclidean
distances to p. The cell IDs of the POIs in the four white
cells will differ from those of p by 1 in both the row and the
column numbers. In comparison, the cell IDs of the POIs in
the four gray cells will differ from those of p by 1 in only the
row or the column number.

Compared with square-shaped partitioning, a hexagonal
partitioning of the space offers isotropic properties such that
the nearest cells of a cell have the same distance to the cell
regardless of the direction [39]. The Cube coordinate sys-
tem (Figure 3b) is based on this partitioning scheme, where
the coordinates of each cell are three-dimensional integers,
i.e., ïhx, hy, hzð. Cube is the most representative coordinate
system [40] and retains the relative position information of
different cells. We thus use such coordinates for the POIs
in addition to the geo-coordinates, to enrich the location
representation of the POIs.

Edge features. We formulate the adjacent matrix of a
graph G as A. Let Ai,j denote the connectivity between POIs
pi and pj . We define Ai,j as:

Ai,j =

{

0, if dist(pi, pj) > ¹

log2 (+dist(pi, pj)/distn,) + 1, otherwise
(2)

where dist(pi, pj) denotes the road network distance be-
tween pi and pj . We discretize the values of dist(pi, pj) into
a few categories where distn is the span of a road network
distance category (200 meters in our experiments) and “+·,”
is the ceiling function. This discretization allows us to learn
different weights for neighbors in different road network
distance categories. We consider POIs to be disconnected if
their road network distance is over a threshold ¹.

3.3 The Soft Graph Edit Distance Algorithm

Our soft graph edit distance (SGED) is based on graph edit
distance (GED) [17], GED measures the “edit distance”

1. https://opendata.cityofnewyork.us/



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 2023 5

Initial graph

Add Remove Soft replace
(Type I)

Soft replace
(Type II)

Fig. 4. SGED graph edit operations (best viewed in color; different
shapes represent POIs of different categories, and different colors rep-
resent POIs with different feature values).

between two graphs by computing the number of “edits”
required to convert one of the graphs to the other. There
are three edit operations in GED, i.e., “remove”, “replace”,
and “add” a node or an edge. Each operation contributes
the same unit edit distance between two graphs. Applying
these operations directly to our problem is suboptimal since
different points of interest (POIs) contribute differently to
the representation of a region as discussed earlier. Moreover,
the original GED cannot be computed within a reasonable
time for graphs with more than 16 nodes [22].

To address these limitations, we extend the classic no-
tion of GED to account for the changes in node features
while avoiding its high computation time complexity. This
leads to our proposal of SGED. In this subsection, we
first present the definitions of GED and SGED, as well as
their differences. We then propose two algorithms that use
SGED for generating positive and negative samples (i.e.,
similar and dissimilar regions of a target region for region
representation learning).

Definition 1. (Graph Edit Distance) Suppose that there are
two graphs G1 and G2, the graph edit distance (GED)
between G1 and G2 is defined as:

GED(G1, G2) = min
(e1,e2,...,em)∈P(G1,G2)

m
∑

i=1

É̂ei (3)

where P(G1, G2) denotes the set of all different se-
quences of edit operations that can transform G1 into
G2, and É̂ei g 0 is the cost of each graph edit operation
ei. Here, we focus on edit operations over the nodes,
i.e., the set of graph edit operations considered in GED
includes:

• Add: add a new node to the graph.
• Remove: remove an existing node from the graph.
• Replace: replace an existing node in the graph with a

new node.

Definition 2. (Soft Graph Edit Distance) Suppose that
there is a graph G1 and another graph G2 which is
generated from G1 via a sequence of randomly selected
edits e1, e2, . . . , em. The soft graph edit distance (SGED)
between graph G1 and G2 is defined as:

SGED(G1, G2) =
m
∑

i=1

Éei (4)

where Éei g 0 is the cost of each graph edit operation ei.
Note that there may be another graph edit sequence that
generates G2 from G1 and hence SGED-based graph edit
sequence between G1 and G2 may not be unique. We al-
low this fuzziness in the definition of SGED-based graph
edit distance for the following reason. The training of our
region similarity learning model only requires graphs
with an upper-bounded SGED-based graph edit distance
to an initial graph G1. To generate the graphs for model
learning, we take a generative procedure by iteratively
applying edit operations to graph G1 until the costs
of the edit operations reach a given SGED-based graph
edit distance bound (Algorithms 1 and 2, detailed late).
This generation procedure guarantees that the SGED-
based graph edit distance between G1 and any graph
generated will not be greater than the given SGED-
based graph edit distance bound. The actual SGED-
based graph edit distance between G1 and a graph gen-
erated may be smaller than the given bound. However,
this does not impact our model learning, since our model
learning target, i.e., region similarity, is a fuzzy concept.
Like GED above, we focus on edit operations on the
nodes. In particular, we consider the following graph
edit operations in SGED (as illustrated by Figure 4):

• Add: add a new node to the graph.
• Remove: remove an existing node from the graph.
• Soft replace (Type I): replace an existing node in the

graph with a new node.
• Soft replace (Type II): amplify the value of a feature of

a node in the graph by a given ratio.

Comparing SGED with GED. SGED differs from GED
in three aspects: (1) GED is defined based on the minimum
editing cost to modify G1 into G2, while SGED simply mea-
sures the cost of a given sequence of graph edit operations,
which is much more efficient to compute and enables more
efficient model learning. (2) GED [17] typically gives the
same (unit) cost to edits on different nodes, while SGED
gives different costs to edits on different nodes (based on
the importance of the POIs, cf. POI weight later). (3) GED
does not edit the feature values of a node, while SGED has a
“soft replace (Type II)” operation that replaces a POI by itself
while modifying some feature value by a given ratio. This
soft replace operation is critical, especially for generating a
graph similar to a small graph with only a few POIs, where
adding, removing, or replacing a POI may create a much
different graph.

SGED for Positive and Negative Sample Generation.
As summarized in Algorithm 1, given the graph represen-
tation Gr of a target region, the SGED-based algorithm gen-
erates a positive sample Gr+ as follows. We first initialize
Gr+ to be the same as Gr (Line 1). We then generate edit
operations randomly from the set of add, remove, and soft
replace operations to the nodes in Gr+ . Graph Gr+ is edited
repeatedly, and the edit distances accumulated from the
edits are recorded (Lines 2 to 22). Once the accumulated
edit distance of Gr+ exceeds a threshold ϵ+ with one more
edit, the algorithm terminates and returns the resultant Gr+ .
The generated Gr+ has less than ϵ+ edit distance to Gr .
Similarly, the SGED-based algorithm generates a negative
sample Gr− with more than ϵ− edit distance to Gr to



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 2023 6

Algorithm 1 SGED-based algorithm for positive sample
generation

Input: A graph representation Gr of a target region.
Output: A positive sample Gr+ of Gr .

1: acc = 0;
2: ops = [];
3: op = null;
4: Gr+ = Gr ;
5: I =

∑n
i=1 spi · upi ;

6: while acc < ϵ+ do
7: // Do nothing for the first round;
8: Gr+ = Gr+ .update(op)
9: op = randomOp();

10: if op is add then
11: p′ = randomPoi(All);
12: acc+ = (sp′ · 1/(nc(G, p′) + 1))/I ;
13: else if op is remove then
14: p = randomPoi(Gr+);
15: acc+ = (sp · up)/I ;
16: else if op is softReplace then
17: subOp = randomReplace();
18: if subOp is newPoi then
19: p = randomPoi(Gr+);
20: p′ = randomPoi(All);
21: acc+ = (sp · up + s′p · u

′

p)/I ;
22: else
23: p = randomPoi(Gr+);

24: acc+ = (sp · up · w
f
j · |∆|)/I ;

25: return Gr+

generate a negative sample Gr− . Graph Gr , its positive
sample Gr+ and its negative sample Gr− form a resultant
triple ïGr, Gr+ , Gr−ð. Below, we define the cost of a POI
edit, denoted by É, assuming a graph Gr to be edited.

É =



















































sp′ · 1/(nc(Gr, p
′) + 1), add a new POI p′

sp · up, remove an existing POI p

sp · up + sp′ · up′ , soft replace (Type I) an

existing POI p by a new p′

sp · up · w
f
j · |∆|, soft replace (Type II) the

feature value j of POI p by increasing

or decreasing with a ratio of ∆

(5)

where sp (sp′ ) and up (up′ ) denote the “importance” and
“uniqueness” of POI p (p′), nc(G, p′) denotes the number of

POIs in Gr that are in the same category as p′, wf
j denotes

the weight of feature j. The uniqueness of up denotes
how unique p is in terms of its category. Suppose nc(G, p)
denotes the number of POIs in Gr that are in the same
category as p, then up = 1/nc(G, p).

Intuitively, a POI that is more unique in Gr (i.e., with
few other POIs in the same category of p) should introduce
a larger edit distance when it is edited. For the add and
soft replace (Type I) operations in Algorithm 1, the new
POI p′ is randomly selected from the map area used for
model training. Further, for the add operation, we randomly
select a position within the target region for the POI p′. For
the remove and soft replace operations in Algorithm 1, the

Algorithm 2 SGED-based algorithm for negative sample
generation

Input: A graph representation Gr of a target region.
Output: A negative sample Gr− of Gr .

1: acc = 0;
2: ops = [];
3: Gr− = Gr ;
4: I =

∑n
i=1 spi · upi ;

5: while acc < ϵ− do
6: op = randomOp();
7: if op is add then
8: p′ = randomPoi(All);
9: acc+ = (sp′ · 1/(nc(G, p′) + 1))/I ;

10: else if op is remove then
11: p = randomPoi(Gr−);
12: acc+ = (sp · up)/I ;
13: else if op is softReplace then
14: subOp = randomReplace();
15: if subOp is newPoi then
16: p = randomPoi(Gr−);
17: p′ = randomPoi(All);
18: acc+ = (sp · up + s′p · u

′

p)/I ;
19: else
20: p = randomPoi(Gr−);

21: acc+ = (sp · up · w
f
j · |∆|)/I ;

22: Gr− = Gr− .update(op);

23: return Gr−

exiting POI p is randomly selected from Gr+. Further, for
soft replace (Type II), we randomly select a feature j from
POI p and update its value by a randomly selected ratio
∆ ∈ (−1, 1).

Given a sequence of m SGED operations e1, ..., em with
edit costs Ée1 , Ée2 , . . . , Éem , their overall impact (i.e., total
edit distance) to Gr is

∑m
i=1 Éei . We normalize this impact

value by the importance and uniqueness values of all the
POIs in Gr originally, i.e, I =

∑n
i=1 spi · upi where n is

the number of POIs in Gr . The normalized SGED-based
graph edit distance of m SGED operations, denoted by acc,
is acc =

∑m
i=1 Éei/I .

This normalized acc is used with ϵ+ and ϵ− in Algo-
rithm 1 and Algorithm 2 to control the generation of the
positive and negative samples Gr+ and Gr− . Below, we

detail how the POI importance score sp and the weight wf
j

of feature j are calculated.
POI weighting. We compute the important spi of a

POI pi as a normalized aggregation of its non-coordindate
feature values:

spi = (
d

∑

j=1

wf
j · pi · aj)/ max

p∈C(pi)
{

d
∑

j=1

wf
j · p · aj} (6)

where pi ·aj denotes the j-th non-coordinate feature value of
pi. In our implementation, we use two such features (d = 2),
height and size, due to the limited data availability, although
our technique generalizes to d > 2. C(pi) denotes the set of
POIs that are in the same category of pi. The weight of each

feature, i.e, wf
j , is used to reflect the relative importance of a

feature dimension. Intuitively, a feature dimension carries a



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 2023 7

Multi-R
GCN

......

FC Layer

Output

 Assignment matrix

Node embeddings

Pooled graph

9

3

Pooling

Multi-R
GCN

Multi-R
GCN

Multi-R
GCN

CAT

(a)

aggregation 

distance category 1
distance category 3 

distance category 2

aggregation 

aggregation 

(b)

Fig. 5. (a) MPGCN Structure; (b) The Multi-R GCN block for a target node (the black solid one, best view in color).

heavier weight if the values of POIs in this dimension have
a larger variance because such a feature dimension helps
distinguish different POIs compared with other feature di-

mensions. We compute wf
j for each POI category separately

because the same feature dimension may contribute to the
importance of POIs in different categories differently.

Given a set of n POIs from the entire training dataset,

each with d-dimensional features, we compute wf
j using

a Shannon entropy-based ranking algorithm. Shannon en-
tropy is a commonly used measurement of uncertainty in
information theory [41]. The idea of entropy-based ranking
is to compute the weights of different parameters (i.e.,
feature dimensions in our case) according to the parameter
value distribution. If the values of a feature dimension vary
greatly among the data samples (i.e., POIs), then the feature
dimension is considered an important one, as the feature
dimension brings more information based on the principle
of Shannon entropy [42].

The input to the entropy-based ranking is an n × d
decision matrix M, where an element Mij is the value of the
i-th POI in the j-th feature dimension (e.g., a POI height).
We normalize M with the min-max scaling as follows:

Mij = (Mij−min(M·j))/(max(M·j)−min(M·j)) (7)

This normalization is critical because different feature di-
mensions may have different scales (e.g., the maximum
height of a POI is less than 1,000 meters, while the maximum
size of a POI can be more than 50,000 square meters. After
the normalization, the entropy of each feature dimension is
computed as:

Ej = − ln(n)−1·
n
∑

j=1

Mij·ln (Mij), Mij = Mij/
n
∑

j=1

Mij (8)

We then compute the weight of each feature dimension
based on its entropy by:

wf
j = (1− Ej)/(d−

n
∑

j=1

Ej), j = [1, d] (9)

With the computed weight of each feature dimension,
we then generate positive and negative samples via algo-
rithms 1 and 2.

3.4 MPGCN

Given a graph Gr representing a region of interest or
its generated positive/negative sample graphs, we pass it

and its adjacency matrix A into a GCN variant named
MPGCN that we propose for graph embedding. As shown
in Figure 5a, MPGCN has two parallel branches. The upper
branch uses two Multi-R GCN (cf. Figure 5b) blocks to
learn the node embeddings. For each node i in the Multi-R
GCN block, instead of taking all neighbors equally [10], [43],
we perform message passing [44] from its neighbors with
different relationships (i.e., different road network distance
categories) separately, and we take the weighted sum as
node i’s new embedding h′

i:

h′

i =
∑

φ∈Φ, g∈Ni,ψ

Wφghg (10)

where Φ denotes the set of different road network distance
categories that node i’s neighbors fall into. Ni,φ denotes the
neighbors in category ϕ, Wφ denotes the weight of ϕ, hg

denotes the feature vector of node i’s neighbor g.
The lower branch of MPGCN uses another two Multi-

R GCN blocks to learn an assignment matrix for the input
graph. The learned assignment matrix is used to select the
nodes to be fed into the next model component, i.e., a
fully connected (FC) layer. For example, the input graph in
Figure 5a contains 9 nodes, and we keep only 3 of them for
the FC layer. The learned assignment matrix in this example
has three columns, and each column has only one element
being 1 while all others are 0’s. This lower branch learns to
keep the more representative POIs from an input graph (i.e.,
to learn the relative importance among the POIs). After the
pooling operation, we apply an FC layer on the remaining
nodes to generate the final representation of an input graph.

4 EXPERIMENTS

In this section, we evaluate C-MPGCN against state-of-the-
art models and study the effectiveness of each of the model
components.

4.1 POI categories

We collect the POIs from the OpenStreetMap dataset and
study the POI type tags, which are shown as the subcat-
egories in Table 1. The number next to each subcategory
in the table denotes the number of POIs collected in that
subcategory. To reduce the number of POI categories to
be considered, we merged the subcategories into 30 cate-
gories, e.g., night club, gambling, and dance are merged



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 2023 8

TABLE 1
POI Categories: the number next to each category denotes the number

of POIs of that category.

Categories Subcategories

#1 bridges (4)

#2 data center (9)

#3 marketplace (9)

#4 cinema (19)

#5 construction (91)

#6 shelter (96), shed (1,713)

#7 nightclub (6), gambling (1), dance (1)

#8 ruins (1), tourism (1), mosque (1), monastery (1), tower (3),
historical (4)

#9 waste transfer station (1), recycling (12)

#10 farm (1), farm auxiliary (1), barn (8), stable (17), green-
house (18)

#11 car wash (26), vehicle inspection (1), car service (1),
car repair (1), car sharing (2), bicycle rental (4),
car rental (25)

#12 funeral home (1), mortuary (1), crematorium (1),
prison (19), grave yard (31)

#13 bus depot (1), transportation (3), bus station (14),
train station (34)

#14 deckhouse (1), ship (1), submarine (1), boat storage (1),
boathouse (3), boat rental (10), ferry terminal (10), slip-
way (15), marina (60)

#15 motel (2), hotel (86)

#16 first aid (1), Health Center (1), nursing home (2), veteri-
nary (15), childcare (22), dentist (22), doctors (27), clinic (38),
social facility (50), pharmacy (102), hospital (245)

#17 atm (1), police station (1), office (71), police (72),
post office (88), fire station (198), bank (213), fuel (289)

#18 shop (2), supermarket (6), retail (535)

#19 manufacture (7), industrial (573)

#20 bowling alley (1), fitness centre (1), gym (2), fit-
ness station (7), sports centre (73), swimming pool (932)

#21 company (1), studio (5), commercial (1,031)

#22 warehouse (129)

#23 town hall (1), conference centre (1), concert hall (1), chapel
3), museum (4), arts centre (17), public building (21), court-
house (24), townhall (37), embassy (51), theatre (102), li-
brary (235)

#24 church (53), place of worship (1,783)

#25 ranger station (2), water park (9), dog park (62), foun-
tain (76), nature reserve (105), garden (506), park (2,287)

#26 iona college dorm (3), music school (1), convent (3),
kindergarten (17), dormitory (53), college (96), univer-
sity (290), school (2,297)

#27 bocce (2), horse riding (2), shooting stand (6),
events venue (7), grandstand (14), miniature golf (19),
bleachers (21), community centre (31), recre-
ation ground (32), stadium (81), golf course (88),
playground (1,225), pitch (5,430)

#28 bandstand (1), food and drink (1), food court (5), bier-
garten (6), ice cream (8), ice rink (13), pub (36), bar (75),
fast food (232), cafe (131), restaurant (670)

#29 bicycle parking (8), parking exit (1), parking entrance (1),
carport (5), parking space (227), parking (6,867)

#30 mansion (2), apartment (2), residential (1,486), apart-
ments (3,319)

TABLE 2
Statistics of the datasets.

POI dataset
Number of POIs 30,832
Number of POIs with size 30,832
Number of POIs with height 5,186

Graph dataset
Number of graph triples for training 5,000
Number of graphs for testing 2,000

as Category #7 (i.e., venues for entertainment). We have
removed highly frequent and non-distinctive POIs such
as garages (101,561) and houses (17,035). We have also
removed categories that have only one subcategory, and the
subcategory has only one or two POIs (e.g., collapsed).

4.2 Experimental Setup

POI Datasets: We collect a POI dataset from New York
City, USA. We obtain the POI categories, geo-coordinates,
and sizes from OpenStreetMap. We merge the POIs into 30
categories based on 149 place type categories (cf. Table 1).
We further obtain the POI heights (for buildings) from
NYC Open Data2. We obtain the road network distances
between POIs from the GraphHopper API3. We summarize
the statistics of the collected POI dataset in Table 2.

We partition the New York City map (the highlighted
area of the map in Figure 2) into a training area (80%
of the highlighted area) and a testing area (the rest 20%
of the highlighted area) without overlapping. We generate
regions and graphs for model training based on this POI
dataset following the procedure described in Section 3.1.
For model testing, we generate 2,000 non-overlapping test
graphs following the same steps as those for generating the
graphs for model training. These graphs are also generated
based on the POI dataset above.

Since there is no manually labeled ground-truth data,
we generate three query graphs Gq1, Gq2, and Gq3 for
each testing graph Gt using the SGED-based algorithm
with randomly generated noise ratio in the ranges of (0,
0.05], (0.05, 0.1], and (0.1, 0.15], respectively. We use Gt as
the ground-truth similar graph of the three query graphs.
Intuitively, since the testing graphs are non-overlapping,
Gq1, Gq2, and Gq3 should find Gt to be their most similar
graph (or at least one of the most similar graphs) among the
set of all testing graphs. Table 2 summarizes the statistics of
the training and testing graph datasets.

Baselines. We compare with the following competitors.
SVSM [12]: This method uses a bags of POI strategy that

represents a region with a distance-to-reference point matrix
and computes region similarity by the cosine similarity of
the matrices. For each region, the region center and four
corner points are used as the reference points, and the
average Euclidean distance of the POIs of each category to
every reference point is stored in the distance-to-reference
point matrix, i.e., a 30×5 matrix.

Triplet [1]: This method splits the whole map with a
square grid, where each cell in the grid is represented by a
vector corresponding to the POIs within the cell. The vector

2. https://opendata.cityofnewyork.us/
3. https://github.com/graphhopper/graphhopper



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 2023 9

TABLE 3
Performance results of C-MPGCN, its variants, and competitors (the best results are in bold, the second best results are underlined).

MRR HR@1 HR@5 HR@10

Noise ratio 0-0.05 0.05-0.1 0.1-0.15 0-0.05 0.05-0.1 0.1-0.15 0-0.05 0.05-0.1 0.1-0.15 0-0.05 0.05-0.1 0.1-0.15

SVSM [12] 90.68% 71.60% 60.67% 89.75% 68.60% 56.85% 91.60% 74.50% 64.40% 92.85% 77.60% 67.15%
Triplet [1] 68.17% 41.80% 39.26% 56.30% 33.95% 31.30% 83.70% 51.15% 47.15% 87.95% 54.90% 50.30%
CntrCNN [45] 79.85% 54.46% 38.18% 75.46% 45.23% 30.83% 86.10% 66.22% 47.08% 88.66% 70.61% 51.67%
GraphSim [30] 51.00% 21.58% 18.17% 35.25% 11.20% 9.90% 70.70% 30.40% 24.75% 82.90% 44.25% 34.10%
MVURE [15] 79.71% 60.78% 53.54% 70.56% 48.33% 35.56% 91.11% 76.66% 76.11% 97.78% 91.11% 84.44%
C-MPGCN 99.28% 89.18% 77.58% 99.10% 87.00% 73.40% 99.55% 91.60% 81.90% 99.60% 93.40% 85.95%

C-MPGCN-Hei 98.75% 86.60% 74.83% 98.35% 83.85% 70.75% 99.25% 89.45% 79.15% 99.45% 92.15% 82.60%
C-MPGCN-S 98.41% 85.07% 76.23% 98.10% 82.45% 72.60% 98.75% 88.35% 79.95% 99.10% 90.30% 83.80%
C-MPGCN-Hex 98.58% 84.26% 73.79% 98.25% 81.35% 69.70% 98.95% 87.10% 78.40% 99.15% 90.30% 81.80%
C-MPGCN-D 97.34% 84.98% 71.65% 97.00% 82.40% 67.45% 97.60% 87.50% 75.70% 98.05% 89.70% 80.25%
C-MPGCN-P 98.75% 84.53% 73.98% 98.50% 81.60% 70.05% 99.00% 88.10% 78.25% 99.20% 90.25% 81.50%
C-GCN 98.31% 86.59% 74.85% 97.85% 84.35% 70.90% 99.00% 88.65% 79.15% 99.10% 91.05% 82.30%

has a dimension of 30, and each value in the vector denotes
the number of POIs in the corresponding category. Triplet
first encodes the whole map into a large feature map. The
region similarity of two cropped regions is then computed
by the Euclidean distance between the corresponding sub
feature maps within the learned whole feature map. Based
on the Euclidean distance of different regions, a triplet
contrastive learning-based CNN model was used to achieve
the model training.

CntrCNN: This method splits a given region with a
square grid, where each cell is represented by a vector corre-
sponding to the POIs within the cell, like that in Triplet [1].
CntrCNN learns the embedding for each input region via
a triplet contrastive learning-based CNN model [45]. After
training the CntrCNN (with the same training data as C-
MPGCN), the region similarity between every two regions
is computed by the Euclidean distance between their em-
bedding vectors.

GraphSim [30]: This method addresses the problem
of graph similarity computation by directly matching two
sets of node embeddings without the need to use fixed-
dimensional vectors to represent whole graphs. The nodes
in each graph only have the category information, and
the edge features are removed. We take the graph similar-
ity score generated by our SGED-based algorithms as the
ground-truth similarity score labels for training the Graph-
Sim. After training, the Euclidean distance between graph
embeddings is taken as the similarity when evaluating the
model performance.

MVURE [15]: This method introduces a joint learn-
ing module that boosts the region embedding learning by
sharing cross-view information and fuses multi-view em-
beddings by learning adaptive weights. We use the same
training process as that in the paper. In the testing process,
for each of the regions in the test dataset, we apply the idea
of SGED to generate a similar region (e.g., adding a certain
amount of noise: 0-0.05, 0.05-0.1, and 0.1-0.15 to the region
features and region-wise relationships) as the ground truth
region when doing the similar region search.

Evaluation metrics: We use two metrics to evaluate the
effectiveness of C-MPGCN:

• MRR, which is a ranking-based metric where MRR =
1/rank, and rank denotes the rank of the ground-truth

graph Gt in a model’s returned list of a query graph Gq .
We report the averaged MRR of all query graphs.

• HR@k, which denotes the averaged probability that a
model returns the ground-truth graph Gt among its top-k
answers given a query graph Gq .

Hyperparameters: MPGCN uses the following hyperpa-
rameters. In the embedding matrix learning module, the
dimension of the learned embeddings after the first Multi-
R GCN layer is 20, and that after the second Multi-R GCN
layer is 10. The dimension of the output after the two GCN
layers is then 30 because we concatenate the output of the
two layers. In the assignment matrix learning module (pool-
ing), we keep 10 nodes in its output. After pooling, MPGCN
uses a fully connected layer to obtain the output embedding,
which also has a dimension of 30. Batch normalization [46]
is applied after each GCN layer, and L2 normalization is ap-
plied to the learned node embeddings. For the competitors
SVSM and Triplet, we use the default settings from their
original papers. Experiments are conducted on NVIDIA
TESLA A100 GPUs with 80 GB memory.

The graphs generated for our C-MPGCN model and
GraphSim are circular regions cropped from the training
area with the radius µ of 1 km. For SVSM, Triplet, and Cntr-
CNN, the corresponding inputs are square-shaped regions
with a side length of 2 km sharing the same region centers
as those used in C-MPGCN. The hexagon partition in C-
MPGCN has a side length of 10 meters (the diameter of
each cell’s excircle is 20 meters), and the square partition in
Triplet has a side length of 20 meters. The graphs generated
for our C-MPGCN and competitors contain the same POI
list but have different attribute values for each POI. The
threshold ¹ for determining the neighboring road network
distance in MPGCN is 400 meters.

4.3 Effectiveness

Table 3 shows the result on the collected NYC datasets. We
see that C-MPGCN is substantially better than the competi-
tors SVSM, Triplet, CntrCNN, GraphSim, and MVURE. In
terms of MRR, C-MPGCN outperforms SVSM, Triplet, Cn-
trCNN, GraphSim, and MVURE by 8.60%, 31.11%, 19.43%,
48.28%, and 19.57%, respectively, when the query graphs
are generated via SGED-based algorithm with the noise
ratio in the range of (0, 0.05]. With the increase of the



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 2023 10

noise ratio to the range of (0.1, 0.15), the advantage of C-
MPGCN over the three competitors increases to 16.91%,
38.32%, 39.40%, 59.41%, and 20.04%, respectively. In terms
of HR@1, HR@5, and HR@10, similar performance gains
are witnessed. Take HR@10 as an example. C-MPGCN out-
performs SVSM, Triplet, CntrCNN, and MVURE by 6.75%,
11.65%, 10.94%, 63.85%, 16.70%, and 1.82%, respectively,
when the query graphs are generated with the noise ratio in
the range of (0, 0.05]. With the increase of the noise ratio to
the range of (0.1, 0.15], the advantage of C-MPGCN gener-
ally increases to 18.80%, 35.65%, 34.28%, 51.85%, and 1.51%,
respectively. These results confirm the effectiveness of C-
MPGCN in capturing the region similarity. Regarding the
inferior performance of GraphSim, we conjecture that this is
because: (1) GraphSim is a graph matching algorithm where
the edge features have been removed, while our problem is
a graph similarity learning problem where both node and
edge features play essential roles. (2) The datasets in the
GraphSim paper contain graphs with less than 100 nodes,
while that of our model contains hundreds and even over
one thousand nodes. (3) GraphSim requires exact graph
similarity scores for its model training, while the similarity
scores computed by the SGED-based algorithm are fuzzy
ones. Regarding the inferior performance of Triplet and
CntrCNN to that of SVSM, we conjecture that the deep
learning models Triplet and CntrCNN are impacted by the
limited information in their training data and ineffective
region representation. For these two models, their training
data only contains POI category information, but not POI
size and height information, which is needed to learn the
region similarity under our problem setting. Also, they
represent regions as grids instead of graphs. Their approach
is less effective in region representation under our problem
setting. Also, they represent regions as grids instead of
graphs, which is more effective for region representation
under our problem setting. SVSM, on the other hand, cannot
fully explore the rich spatial information between POIs.
Also, SVSM cannot capture the height and size information.

4.4 Ablation Study

To show the importance of different components of C-
MPGCN, we further implement the following variants: C-
MPGCN-Hei: C-MPGCN without capturing POI heights;
C-MPGCN-S: C-MPGCN without capturing POI sizes; C-
MPGCN-Hex: C-MPGCN without capturing POI hexagonal
coordinates; C-MPGCN-D: C-MPGCN without discretizing
the road network distances of neighboring POIs during the
MPGCN aggregation, and all neighbors are treated equally
in a single road network distance category; C-MPGCN-P:
C-MPGCN without the pooling in MPGCN; C-GCN: C-
MGPCN with MPGCN being replaced with a typical 2-layer
GCN model [47].

Table 3 shows the performance results of these variants.
All variants show inferior performance compared to the full
C-MPGCN model. The inferior performance of C-MPGCN-
Hei and C-MPGCN-S (which do not use POI heights and
sizes) confirms that POI height and size play an important
role in region similarity learning. This result also shows the
importance of using SGED instead of GED, as SGED has an
extra “soft replace” operation that helps capture POI height
and size features.

The inferior performance of C-MPGCN-Hex, C-
MPGCN-D (which do not consider the different road net-
work distances between the POIs), and C-MPGCN-P (which
does not consider POI importance) confirms that POI re-
lationships such as isotropic properties, road network dis-
tances, and relative importance are also critical factors that
should be considered in region similarity learning.

As for the C-GCN model, its inferior performance fur-
ther confirms the effectiveness of the MPGCN component of
our C-MPGCN model. In Table 3, all variants show superior
performance compared to the baselines, which demonstrate
the superiority of our graph representation and triplet gen-
eration methods.

4.5 Parameter Study

We study the impact of different pooling numbers, different
¹ values, and different µ values described in Equation 2.

The pooling number Pnum denotes the number of nodes
kept in the MPGCN model. We vary the value of Pnum from
10 to 50 and summarize the results in Table 4. We set 50 as
the upper bound as the average number of nodes within a
graph in our collected dataset is between 50 and 60. When
Pnum g 60, the pooling process will not be able to capture
the more important (i.e., representative) POIs. We observe
that our model achieves the best performance when Pnum

is between 20 and 30, and we use 25 as the default setting.
Threshold ¹ in Equation 2 determines the neighboring

POIs that C-MPGCN considers in aggregation. We set ¹ as
400 meters, which denotes that POIs within 400 meters are
taken as neighbors, and the neighbors are separated into
two categories, 0-200 meters, and 200-400 meters. We vary ¹
among [200, 400, 800, 1,600, 3,200]. Since the cropped regions
have a radius of 1 km, all POIs within a region will be
taken as neighbors when ¹ is 3,200 meters. We summarize
the results in Table 5, and observe that our model achieves
the best performance when ¹ is 400. A larger ¹ negatively
impacts the model performance, because there are too many
neighbors for each node. During the message passing pro-
cess, different nodes aggregate information from similar sets
of nodes and obtain similar node representations, which will
lead to the over smoothing problem [48]. A small ¹ also
brings down the model performance, because there are too
few or even no neighbors to be considered, such that little
information can be gained from message passing.

Parameter µ denotes the radius of the regions that we
crop for training and testing the C-MPGCN model. A small
µ leads to few POIs within each region. In this case, the
negative regions generated by the SGED-based algorithm
may be much different from the original graph and hence
contain less information to learn. On the other hand, a large
µ leads to many POIs from different categories residing in
each region. In this case, the regions may be more difficult to
differentiate since many regions contain POIs from all kinds
of categories. We vary the value of µ from 0.5 km to 2 km for
model training and testing, and we summarize the results
after 200 training epochs with a batch size of 45 in Table 6.
We observe that the performance of our model improves
when µ increases from 0.5 km to 1 km. When µ continues
to increase and exceeds 1.5 km, the model performance
decreases. These results are consistent with our analysis
above. We thus have used µ = 1 km as our default setting.



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 2023 11

TABLE 4
Performance results of C-MPGCN with different values of Pnum (the best results are in bold, and the second-best results are underlined).

MRR HR@1 HR@5 HR@10

Noise ratio 0-0.05 0.05-0.1 0.1-0.15 0-0.05 0.05-0.1 0.1-0.15 0-0.05 0.05-0.1 0.1-0.15 0-0.05 0.05-0.1 0.1-0.15

Pnum = 10 98.78% 84.72% 75.11% 98.40% 81.10% 71.50% 99.25% 87.80% 78.75% 99.35% 90.60% 81.85%
Pnum = 20 99.06% 88.13% 77.98% 98.85% 85.95% 74.20% 99.50% 90.40% 81.95% 99.70% 91.90% 84.95%
Pnum = 30 99.28% 87.56% 77.57% 99.10% 84.20% 73.95% 99.45% 91.25% 81.50% 99.55% 93.80% 84.10%
Pnum = 40 98.44% 83.61% 74.22% 98.05% 80.00% 70.15% 98.95% 88.15% 78.90% 99.10% 90.65% 82.15%
Pnum = 50 98.18% 84.65% 72.82% 97.80% 81.90% 68.60% 98.70% 87.55% 76.65% 98.85% 90.40% 80.90%

TABLE 5
Performance results of C-MPGCN with different θ values (the best results are in bold).

MRR HR@1 HR@5 HR@10

Noise ratio 0-0.05 0.05-0.1 0.1-0.15 0-0.05 0.05-0.1 0.1-0.15 0-0.05 0.05-0.1 0.1-0.15 0-0.05 0.05-0.1 0.1-0.15

θ = 200 98.65% 85.23% 73.54% 98.20% 82.75% 69.90% 99.10% 87.80% 77.25% 99.35% 90.25% 80.30%
θ = 400 99.28% 89.18% 77.58% 99.10% 87.00% 73.40% 99.55% 91.60% 81.90% 99.60% 93.40% 85.95%
θ = 800 97.22% 81.22% 74.20% 96.70% 77.90% 70.40% 97.70% 84.55% 78.05% 98.25% 87.35% 81.90%
θ = 1600 98.40% 77.32% 69.49% 97.70% 72.45% 64.10% 98.90% 83.00% 75.20% 99.35% 86.65% 80.05%
θ = 3200 97.34% 84.98% 71.65% 97.00% 82.40% 67.45% 97.60% 87.50% 75.70% 98.05% 89.70% 80.25%

TABLE 6
Performance results of C-MPGCN with different γ values (the best results are in bold, and the second-best results are underlined).

MRR HR@1 HR@5 HR@10

Noise ratio 0-0.05 0.05-0.1 0.1-0.15 0-0.05 0.05-0.1 0.1-0.15 0-0.05 0.05-0.1 0.1-0.15 0-0.05 0.05-0.1 0.1-0.15

γ = 0.5 km 95.53% 77.73% 68.42% 95.15% 74.80% 64.30% 95.95% 80.85% 72.50% 96.50% 84.30% 75.85%
γ = 1 km 96.80% 82.52% 71.36% 96.10% 79.50% 67.30% 97.60% 86.15% 76.15% 97.95% 88.35% 79.80%
γ = 1.5 km 97.63% 81.87% 71.93% 97.15% 78.60% 68.50% 98.25% 85.10% 75.20% 98.50% 88.80% 78.70%
γ = 2 km 92.62% 72.29% 58.38% 91.75% 69.00% 53.80% 93.55% 75.65% 62.95% 94.45% 78.65% 66.20%

4.6 Efficiency and Complexity

The efficiency of C-MPGCN. To evaluate the running time
efficiency of C-MPGCN and the baseline models, we run
Triplet, CntrCNN, C-MPGCN, GraphSim, and MVURE with
the same batch size 45 and summarize the averaged training
times per batch in Table 7. SVSM does not have a training
time because it compares the Euclidean distance of the
feature vectors of two regions. Among the other models,
MVURE has the lowest training time complexity due to its
simple model structure. The training time of C-MPGCN is
on par with those of Triplet, CntrCNN, and GraphSim i.e.,
all four models can train on a batch with about 6 seconds.

TABLE 7
Running Time Efficiency of C-MPGCN and the baselines.

Training
Testing

0-0.05 0.05-0.1 0.1-0.15

SVSM [12] N/A 0.47 s 0.41 s 0.41 s
Triplet [1] 6.10 s 0.14 s 0.13 s 0.13 s
CntrCNN [45] 6.85 s 0.07 s 0.07 s 0.07 s
GraphSim [30] 6.04 s 13.41 s 12.32 s 12.06 s
MVURE [15] 0.03 s 0.014 s 0.015 s 0.016 s
C-MPGCN 6.52 s 0.20 s 0.14 s 0.14 s

To further evaluate the inference time efficiency, we
run C-MPGCN and the baseline models for 2,000 region
similarity queries using different noise ratios (randomly
chosen within the ranges of (0, 0.05], (0.05, 0.1], and (0.1,

0.15], respectively). Table 7 reports the averaged query times
for each query. Among the six models, GraphSim is the most
time-consuming, while MVURE is the fastest again due to
its simple model structure. The inference time of C-MPGCN
is on par with that of Triplet and is around twice that of
CntrCNN. Considering the performance gain of C-MPGCN,
we argue that its extra time costs are worthwhile.

The complexity of SGED. Computing the exact GED
is NP-complete [21]. For our graph generation algorithm
using the SGED-based algorithm, suppose that there are
nc(Gr) nodes in a target graph Gr for which a positive (or
negative) sample (i.e., a graph variant) is to be generated,
and there are n nodes in the entire training dataset. The time
complexity of the four graph edit operations in SGED are: (1)
O(1) for the “add” operation, as we randomly select a POI
from the entire POI set, (2) O(1) for the “remove” operation,
as we randomly select a POI from the target graph, (3) O(1)
for the “soft replace (Type I)” operation, as we randomly
select a POI from the entire POI set to replace a randomly
selected POI from the target graph, and (4) O(1) for the
“soft replace (Type II)” operation with the same reason for
the “remove” operation, respectively. Our graph generation
algorithm based on SGED uses a sequence of SGED edit
operations to generate a graph similar or dissimilar to the
target graph Gr according to a given similarity threshold
ϵ ∈ (0, 1). The average edit distance of each operation is
O(1/nc(Gr)) because there are nc(Gr) nodes in the target
graph. Therefore, the complexity of the averaged number of



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 2023 12

(a) (b) (c) (d)

Fig. 6. (a) A case study with an area in San Francisco (the red region is the query region; the gray, orange, purple, and blue regions are the top-3
similar regions returned by C-MPGCN, CntrCNN, Triplet, and SVSM, respectively); (b) Hotel distribution; (c) Car break-ins distribution; (d) Twitter
usage distributions.

edit operations to reach ϵ is bounded by the O(nc(Gr)). The
overall time complexity of our graph generation algorithm
is O(nc(Gr)).

4.7 Case study

To further show the effectiveness of our C-MPGCN model,
we apply the trained C-MPGCN model based on the NYC
dataset to a case study using a map area in San Francisco. We
select a POI in San Francisco and crop a query region r with
a radius of 1 km around the POI, which is denoted by the
red circled region in Figure 6. The trained models (including
our C-MPGCN, CntrCNN, Triplet, and SVSM) then search
the regions within San Francisco to find regions that are
similar to r without overlapping with it.

Figure 6a shows the top-3 similar regions identified by
C-MPGCN (the gray ones), CntrCNN (the orange ones),
Triplet (the purple ones), and SVSM (the blue ones), respec-
tively. “ ” denotes that the resulting region is shared by
both C-MPGCN and CntrCNN. Figure 6b to Figure 6d show
the distribution of hotel, car break-ins4, and Twitter usage5

in San Francisco, which are used to help benchmark the
similar regions identified by different methods (C-MPGCN,
CntrCNN, Triplet, and SVSM). We can see that the similar
regions identified by C-MPGCN are those that share a
higher similarity with r in Figures 6b to 6d. Compared with
the baseline methods, the results showcase the effectiveness
of the proposed C-MPGCN.

5 CONCLUSION

We proposed a triplet contrastive learning-based graph
convolutional neural network model named C-MPGCN for
region similarity learning, where a region is represented as
a graph. To generate similar and dissimilar graph triples
for model training, we propose a soft graph edit distance-
based algorithm that measures the similarity between two
graphs (i.e., regions) according to a modified edit distance
from one graph to the other. From the generated data, C-
MPGCN learns to capture region features based on POIs, in-
cluding POIs’ spatial features and relationships such as their

4. https://projects.sfchronicle.com/2018/sf-car-breakins/
5. https://a.fastcompany.net/upload/San-FranciscoBig.jpg

road network distances. C-MPGCN also learns graph struc-
tural information such as a node hierarchy via a pooling-
based multi-relational GCN module. Experiments show that
C-MPGCN outperforms state-of-the-art methods for region
similarity learning consistently.

6 ACKNOWLEDGEMENTS

We thank Khoa D. Doan for the valuable discussion when
preparing this manuscript. This work is partially supported
by the National Natural Science Foundation of China (No.
32070025) and the Australian Research Council (ARC) Dis-
covery Project (DP230101534).

REFERENCES

[1] Y. Liu, K. Zhao, and G. Cong, “Efficient similar region search with
deep metric learning,” in ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2018, pp. 1850–1859.

[2] Y. Liu, T.-A. N. Pham, G. Cong, and Q. Yuan, “An experimental
evaluation of point-of-interest recommendation in location-based
social networks,” Proceedings of the VLDB Endowment, vol. 10,
no. 10, pp. 1010–1021, 2017.

[3] T.-A. N. Pham, X. Li, and G. Cong, “A general model for out-of-
town region recommendation,” in The Web Conference, 2017, pp.
401–410.

[4] G. McKenzie and D. Romm, “Measuring urban regional similarity
through mobility signatures,” Computers, Environment and Urban
Systems, vol. 89, p. 101684, 2021.

[5] S. Ashkezari-Toussi, M. Kamel, and H. Sadoghi-Yazdi, “Emotional
maps based on social networks data to analyze cities emotional
structure and measure their emotional similarity,” Cities, vol. 86,
pp. 113–124, 2019.

[6] H. Wang, D. Kifer, C. Graif, and Z. Li, “Crime rate inference with
big data,” in ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 635–644.

[7] H. Yao, F. Wu, J. Ke, X. Tang, Y. Jia, S. Lu, P. Gong, and J. Ye, “Deep
multi-view spatial-temporal network for taxi demand prediction,”
in AAAI Conference on Artificial Intelligence, 2018, pp. 2588–2595.

[8] S. Liu, Q. Liu, and Z. Bao, “Dars: Diversity and distribution-aware
region search,” in International Conference on Database Systems for
Advanced Applications, 2020, pp. 204–220.

[9] X. Jin, B. Oh, S. Lee, D. Lee, K.-H. Lee, and L. Chen, “Learning
region similarity over spatial knowledge graphs with hierarchical
types and semantic relations,” in ACM International Conference on
Information and Knowledge Management, 2019, pp. 669–678.

[10] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable
pooling,” in Annual Conference on Neural Information Processing
Systems, 2018, pp. 4805–4815.



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 2023 13

[11] G. Le Falher, A. Gionis, and M. Mathioudakis, “Where is the soho
of rome? measures and algorithms for finding similar neighbor-
hoods in cities.” International AAAI Conference on Web and Social
Media, vol. 2, pp. 228–237, 2015.

[12] C. Sheng, Y. Zheng, W. Hsu, M. L. Lee, and X. Xie, “Answer-
ing top-k similar region queries,” in International Conference on
Database Systems for Advanced Applications, 2010, pp. 186–201.

[13] B. Kulis et al., “Metric learning: A survey,” Foundations and Trends
in Machine Learning, vol. 5, no. 4, pp. 287–364, 2012.

[14] B. Wang, Y. Lin, S. Guo, and H. Wan, “Gsnet: Learning spatial-
temporal correlations from geographical and semantic aspects for
traffic accident risk forecasting,” in AAAI Conference on Artificial
Intelligence, 2021, pp. 4402–4409.

[15] M. Zhang, T. Li, Y. Li, and P. Hui, “Multi-view joint graph repre-
sentation learning for urban region embedding,” in International
Conference on International Joint Conferences on Artificial Intelligence,
2021, pp. 4431–4437.

[16] B. Hui, D. Yan, W.-S. Ku, and W. Wang, “Predicting economic
growth by region embedding: A multigraph convolutional net-
work approach,” in ACM International Conference on Information &
Knowledge Management, 2020, pp. 555–564.

[17] X. Gao, B. Xiao, D. Tao, and X. Li, “A survey of graph edit
distance,” Pattern Analysis and Applications, vol. 13, no. 1, pp. 113–
129, 2010.

[18] H. Bunke and K. Shearer, “A graph distance metric based on the
maximal common subgraph,” Pattern Recognition Letters, vol. 19,
no. 3-4, pp. 255–259, 1998.

[19] K. D. Doan, S. Manchanda, S. Mahapatra, and C. K. Reddy, “Inter-
pretable graph similarity computation via differentiable optimal
alignment of node embeddings,” in Proceedings of the International
ACM SIGIR Conference on Research and Development in Information
Retrieval, 2021, pp. 665–674.

[20] B. H., “Error correcting graph matching: on the influence of the
underlying cost function,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 21, no. 9, pp. 917–922, 1999.

[21] Z. Zeng, A. K. Tung, J. Wang, J. Feng, and L. Zhou, “Comparing
stars: On approximating graph edit distance,” Proceedings of the
VLDB Endowment, vol. 2, no. 1, pp. 25–36, 2009.

[22] D. B. Blumenthal and J. Gamper, “On the exact computation of
the graph edit distance,” Pattern Recognition Letters, vol. 134, pp.
46–57, 2020.

[23] X. Zhao, C. Xiao, X. Lin, Q. Liu, and W. Zhang, “A partition-based
approach to structure similarity search,” Proceedings of the VLDB
Endowment, vol. 7, no. 3, pp. 169–180, 2013.

[24] Y. Liang and P. Zhao, “Similarity search in graph databases: A
multi-layered indexing approach,” in IEEE International Conference
on Data Engineering, 2017, pp. 783–794.

[25] S. Bougleux, L. Brun, V. Carletti, P. Foggia, B. Gaüzère, and
M. Vento, “Graph edit distance as a quadratic assignment prob-
lem,” Pattern Recognition Letters, vol. 87, pp. 38–46, 2017.

[26] S. Fankhauser, K. Riesen, and H. Bunke, “Speeding up graph
edit distance computation through fast bipartite matching,” in
International Workshop on Graph-Based Representations in Pattern
Recognition, 2011, pp. 102–111.

[27] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang, “Simgnn: A
neural network approach to fast graph similarity computation,” in
ACM International Conference on Web Search and Data Mining, 2019,
pp. 384–392.

[28] L. Chang, X. Feng, X. Lin, L. Qin, W. Zhang, and D. Ouyang,
“Speeding up ged verification for graph similarity search,” in
International Conference on Data Engineering, 2020, pp. 793–804.

[29] R. E. Burkard, E. Çela, P. M. Pardalos, and L. S. Pitsoulis, The
Quadratic Assignment Problem, 1997.

[30] Y. Bai, H. Ding, K. Gu, Y. Sun, and W. Wang, “Learning-based ef-
ficient graph similarity computation via multi-scale convolutional
set matching,” in AAAI Conference on Artificial Intelligence, 2020,
pp. 3219–3226.

[31] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph matching
networks for learning the similarity of graph structured objects,”
in International Conference on Machine Learning, 2019, pp. 3835–3845.

[32] R. Wang, T. Zhang, T. Yu, J. Yan, and X. Yang, “Combinatorial
learning of graph edit distance via dynamic embedding,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2021, pp.
5241–5250.

[33] J. L. Bentley, “Multidimensional binary search trees used for
associative searching,” Communications of the ACM, vol. 18, no. 9,
pp. 509–517, 1975.

[34] N. Wu, X. W. Zhao, J. Wang, and D. Pan, “Learning effective road
network representation with hierarchical graph neural networks,”
in ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2020, pp. 6–14.

[35] J. Sun, J. Zhang, Q. Li, X. Yi, Y. Liang, and Y. Zheng, “Predicting
citywide crowd flows in irregular regions using multi-view graph
convolutional networks,” IEEE Transactions on Knowledge and Data
Engineering, 2020.

[36] L. Liu, M. Liu, G. Li, Z. Wu, and L. Lin, “Road network
guided fine-grained urban traffic flow inference,” arXiv preprint
arXiv:2109.14251, 2021.

[37] M. Haklay and P. Weber, “Openstreetmap: User-generated street
maps,” IEEE Pervasive Computing, vol. 7, no. 4, pp. 12–18, 2008.

[38] W. Schneider, “Bbbike extracts openstreetmap,” Dec. 2018.
[Online]. Available: https://extract.bbbike.org/

[39] J. Ke, H. Yang, H. Zheng, X. Chen, Y. Jia, P. Gong, and
J. Ye, “Hexagon-based convolutional neural network for supply-
demand forecasting of ride-sourcing services,” IEEE Transactions
on Intelligent Transportation Systems, vol. 20, no. 11, pp. 4160–4173,
2019.

[40] I. Her, “Geometric transformations on the hexagonal grid,” IEEE
Transactions on Image Processing, vol. 4, no. 9, pp. 1213–1222, 1995.

[41] L.-y. Sun, C.-l. Miao, and L. Yang, “Ecological-economic efficiency
evaluation of green technology innovation in strategic emerging
industries based on entropy weighted topsis method,” Ecological
Indicators, vol. 73, pp. 554–558, 2017.

[42] A. Lesne, “Shannon entropy: A rigorous notion at the crossroads
between probability, information theory, dynamical systems and
statistical physics,” Mathematical Structures in Computer Science,
vol. 24, no. 3, 2014.

[43] X. Miao, W. Zhang, Y. Shao, B. Cui, L. Chen, C. Zhang, and J. Jiang,
“Lasagne: A multi-layer graph convolutional network framework
via node-aware deep architecture,” IEEE Transactions on Knowledge
and Data Engineering, 2021.

[44] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive represen-
tation learning on large graphs,” in Annual Conference on Neural
Information Processing Systems, 2017, pp. 1024–1034.

[45] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp. 815–823.

[46] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Interna-
tional Conference on Machine Learning, 2015, pp. 448–456.

[47] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in International Conference on
Learning Representations, 2016.

[48] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and
relieving the over-smoothing problem for graph neural networks
from the topological view,” in AAAI Conference on Artificial Intelli-
gence, vol. 34, no. 4, 2020, pp. 3438–3445.

Yunxiang Zhao is an assistant professor at Bei-
jing Institute of Biotechnology. He received his
Ph.D. degree from The University of Melbourne.
His research interests include spatial data anal-
ysis, bioinformatics, and deep learning.

https://extract.bbbike.org/


IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 2023 14

Jianzhong Qi is a Senior Lecturer in the School
of Computing and Information Systems at The
University of Melbourne. He received his Ph.D.
degree from The University of Melbourne in
2014. His research interests include machine
learning and data management and analytics,
with a focus on spatial, temporal, and textual
data.

Bayu D. Trisedya is a Lecturer in the Faculty of
Computer Science Universitas Indonesia, who is
currently an Honorary Research Fellow at The
University of Melbourne. He received bachelor’s
and master’s degrees from Universitas Indone-
sia in 2009 and 2011, respectively and the Ph.D.
in computer science from The University of Mel-
bourne in 2021. His research interests include
information extraction and NLP.

Yixin Su received his Ph.D. degree from School
of Computing and Information Systems at The
University of Melbourne. His research interests
include graph neural network based recom-
mender systems and deep learning.

Rui Zhang is a visiting Professor at Tsinghua
University and was previously a Professor at the
University of Melbourne. His research interests
include machine learning and big data. He has
won several awards, including Future Fellowship
by the Australian Research Council in 2012,
Chris Wallace Award for Outstanding Research
by the Computing Research and Education As-
sociation of Australasia in 2015, and Google
Faculty Research Award in 2017.

Hongguang Ren is an associate professor at
Beijing Institute of Biotechnology. His research
interests include bioinformatics, genomic epi-
demiology, and deep learning.


	Introduction
	Related Work
	Region Similarity Learning
	Graph Similarity Learning

	Proposed Model
	Model Overview
	Region Representation
	The Soft Graph Edit Distance Algorithm
	MPGCN

	Experiments
	POI categories
	Experimental Setup
	Effectiveness
	Ablation Study
	Parameter Study
	Efficiency and Complexity
	Case study

	Conclusion
	Acknowledgements
	References
	Biographies
	Yunxiang Zhao
	Jianzhong Qi
	Bayu D. Trisedya
	Yixin Su
	Rui Zhang
	Hongguang Ren


