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ABSTRACT
With the explosive growth of commercial applications of recom-
mender systems, multi-scenario recommendation (MSR) has at-
tracted considerable attention, which utilizes data from multiple
domains to improve their recommendation performance simultane-
ously. However, training a unified deep recommender system (DRS)
may not explicitly comprehend the commonality and difference
among domains, whereas training an individual model for each
domain neglects the global information and incurs high compu-
tation costs. Likewise, fine-tuning on each domain is inefficient,
and recent advances that apply the prompt tuning technique to im-
prove fine-tuning efficiency rely solely on large-sized transformers.
In this work, we propose a novel prompt-enhanced paradigm for
multi-scenario recommendation. Specifically, a unified DRS back-
bone model is first pre-trained using data from all the domains in
order to capture the commonality across domains. Then, we con-
duct prompt tuning with two novel prompt modules, capturing the
distinctions among various domains and users. Our experiments on
Douban, Amazon, and Ali-CCP datasets demonstrate the effective-
ness of the proposed paradigm with two noticeable strengths: (i)
its great compatibility with various DRS backbone models, and (ii)
its high computation and storage efficiency with only 6% trainable
parameters in prompt tuning phase. The implementation code is
available for easy reproduction1,2 .

CCS CONCEPTS
• Information systems→ Recommender systems.

1https://gitee.com/mindspore/models/tree/master/research/recommend/PLATE
2https://github.com/Applied-Machine-Learning-Lab/PLATE
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1 INTRODUCTION
Driven by the prevalence of online services and the advances in deep
recommender system (DRS) technology, there has been tremendous
interest in developing DRS models for various commercial scenar-
ios and domains. However, due to the uneven data distributions in
different domains, great efforts have been devoted to cross-domain
recommendation (CDR) [2, 20], which utilizes the information in
richer domains to enhance the recommendation in sparser domains.
This paper focuses onMulti-Scenario Recommendation (MSR), which
leverages data from multiple domains to simultaneously improve
recommendation performance in all domains, i.e., rich or sparse
information domains alike. To avoid confusion, it is notable that
MSR is exactlyMulti-Target CDR orMulti-Domain Recommendation
in research and industry community [30, 38, 42], whereas transfer-
ring knowledge from one source domain to promote another target
domain, i.e., Single-Target CDR [45], is another topic in CDR [10].

Multi-scenario recommendation is faced with challenges in two-
fold. First, there are a large number of domains with distinctive
distributions. Second, there are complex resemblance and exclusion
correlations among domains. Existing efforts on MSR can be catego-
rized into three groups: (i) Mix: one common model is built on data
from all the domains, (ii) Pre-train&Fine-tune: a common model is
first pre-trained using data from all the domains, then fine-tuned for
each domain using the data from each individual domain, and (iii)
Multi-task learning (MTL): a unified model is built based on multi-
task learning. Nevertheless, these conventional approaches suffer
from the following shortcomings: (i) The Mix model only mod-
els commonality whilst neglecting the distinction among domains.
(ii) In Pre-train&Fine-tune, the first drawback is non-trivial model

https://gitee.com/mindspore/models/tree/master/research/recommend/PLATE
https://github.com/Applied-Machine-Learning-Lab/PLATE
https://doi.org/10.1145/3539618.3591750
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parameters and inefficient fine-tuning. For instance, the pre-train
and fine-tune paradigm requires maintaining a domain-specific
model for each domain, incurring high storage and computation
cost. Additionally, fine-tuning brings about the catastrophic forget-
ting issue. To be specific, when fine-tuning the pre-trained model,
some of the common knowledge acquired from multiple domains
will be forgotten. (iii) The deployability of the MTL framework is
inadequate. On the one hand, its structure indicates poor compat-
ibility. For example, the star topology based on fully connected
networks in STAR [30] may hinder its combination with existing
recommendation models such as Factorization Machines (FM) [27].
On the other hand, joint learning becomes infeasible if there exist
a large number of domains.

To address the above-mentioned challenges in MSR, we propose
a novel prompt-enhanced paradigm, which is inspired by the recent
advances in pre-training and prompt tuning [22]. However, since
the tokens in recommendation are mostly discrete features (e.g.,
user ID, item ID, and domain ID), which lack meaningful semantics
as in NLP tasks [22, 41], it is challenging to design NLP-style hard
prompts in MSR setting. To this end, we propose a novel Prompt
Learning And Tuning Enhancement (PLATE) paradigm with two
types of soft prompts, namely domain prompt and user prompt. The
former aims at extracting domain distinctions, and the latter focuses
on conducting more accurate personalized recommendations across
domains. Notably, we develop two parameter-efficient architectures
for user prompt generation, which significantly reduce the amount
of soft prompt parameters caused by a large number of users. To
capture the commonality and difference among domains, we further
propose a two-stage pre-training and prompt tuning framework. To
be specific, we first pre-train a unified DRS backbone model based
on the data from all the domains, which is able to acquire the global
cross-domain commonality. Then, prompt tuning is employed with
domain prompt and user prompt modules so as to capture the
differences among various domains and users.

As a consequence, the implementation of two novel prompt
designs and two-stage optimization has the following merits. First,
since most model parameters are frozen after the pre-training stage,
the cross-domain common knowledge is retained in prompt tuning
stage, which significantly relieves the catastrophic forgetting issue.
Second, only 6% of trainable model parameters are updated for each
domain in the prompt tuning stage, leading to high tuning and
storage efficiency. Third, the proposed PLATE paradigm possesses
great compatibility, as both the prompt modules and the two-stage
framework are applicable to the vast majority of mainstream DRS
models. We validate the effectiveness of PLATE against the state-of-
the-art MSR baselines on three benchmark datasets from Douban,
Amazon, and Ali-CCP.

The contributions of this work can be summarized as follows:
• We propose a novel multi-scenario recommendation paradigm,
PLATE, which applies prompt tuning to multi-scenario recom-
mendation tasks with two novel prompt designs, namely domain
prompt and user prompt. To the best of our knowledge, we are
the first to introduce prompt tuning techniques into MSR;

• Most importantly, the domain prompt and user prompt provide
PLATE great compatibility with various DRS models, tackling
their low flexibility and inadequate fine-tune efficiency when

Embedding Layer Feature Interaction
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Linearuser feature
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Figure 1: Typical DRS architecture.

dealing with multi-scenario recommendation. Besides, the do-
main prompt and user prompt enable PLATE to conduct domain-
aware parameter update andmore personalized recommendation;

• Extensive experiments show that PLATE outperforms the state-
of-the-art baselines based on various DRS backbone models with
only 6% trainable parameters in the tuning stage.

2 PRELIMINARY
In this section, we first define the problem formulation of multi-
scenario CTR prediction. Then, the typical architecture of deep
recommender system (DRS) model is illustrated.

2.1 Multi-Scenario CTR Prediction
In this paper, we focus on the Click-Trough Rate (CTR) prediction
task in multi-scenario recommendation setting with the following
formulation. The recommender system generally takes the follow-
ing data (𝒙, 𝑑,𝑦) as input, where 𝒙 represents the concatenation
of raw features, including user features, item attributes, contex-
tual information, and combination features. 𝑑 represents a domain
indicator 𝑑 ∈ {1, 2, . . . , 𝐷} to distinguish samples from 𝐷 differ-
ent domains. The ground truth label 𝑦 indicates click (𝑦 = 1) or
not (𝑦 = 0). Afterward, the raw features 𝒙 are mapped into low-
dimensional dense embedding vector 𝒆 through an embedding layer.
Finally, the prediction 𝑦 of a user clicking on an item is calculated
via 𝑦 = 𝑓𝑑 (𝒆), where 𝑓𝑑 denotes the recommendation model like
DeepFM [13] in the 𝑑-th domain.

2.2 Typical Architecture of DRS Models
The common architecture of deep recommender system (DRS)
mainly consists of three components: embedding layer, feature
interaction, and output layer as shown in Figure 1. We denote 𝑬 , 𝑳,
𝑯 , and 𝑶 as the parameters of the embedding layer, first-order fea-
ture interaction (linear), high-order feature interaction, and output
layer, respectively [34, 43].

2.2.1 Embedding Layer. The raw input features usually consist
of both categorical and numerical ones as different feature fields.
Suppose there are𝑀 categorical and 𝑁 numerical features, and it
can be represented as:

𝒙 = [𝒙1, 𝒙2, . . . , 𝒙𝑀︸           ︷︷           ︸
one-hot encoding

;𝑥1, 𝑥2, . . . , 𝑥𝑁︸           ︷︷           ︸
scalars

], (1)

where we denote 𝒙𝑚 as the one-hot vector of the𝑚-th categorical
field and 𝑥𝑛 as the scalar of the 𝑛-th numerical field. 𝒙𝑚 is usually
transformed into a low-dimensional embedding by a look-up op-
eration 𝒆𝑚 = 𝑬𝑚 · 𝒙𝑚 , where 𝑬𝑚 ∈ R𝑢𝑚×𝑘 is the weight matrix of
𝑚-th categorical field, 𝑢𝑚 is the number of unique feature values,
and 𝑘 is the pre-defined embedding dimension. For multi-valued
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(a) Pre-training stage of PLATE
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(b) Prompt tuning stage of PLATE
Figure 2: Architecture of PLATE with domain and user prompt in a two-stage pre-training and prompt tuning optimization.

categorical features, we conduct mean pooling on embeddings of
all non-zero feature values. For a numerical feature 𝑥𝑛 , we obtain
its feature embedding 𝒆𝑛 following the mainstream representa-
tion approaches including no embedding, field-embedding, and
discretization [12]. Therefore, the final output of the embedding
layer is the concatenation of embeddings of all feature fields where
∥ denotes the concatenation:

𝒆 = [𝒆1∥𝒆2∥ . . . ∥𝒆𝑀+𝑁 ] . (2)

2.2.2 Feature Interaction. The embedding layer is usually fol-
lowed by a feature interaction component to grasp both low-order
and high-order interactions among different feature fields. For first-
order interaction calculation, a generalized linear model like the
wide component in Wide&Deep [6] is widely used [13, 21]. In ad-
dition, Factorization Machine (FM) [27] is usually implemented to
specify second-order feature interaction as inner product of respec-
tive feature embeddings [13, 21]. Furthermore, feed-forward neural
network [6, 13, 40], Cross Network (CN) [28], and Compressed
Interaction Network (CIN) [21] are utilized to capture implicit and
explicit high-order interactions. We denote the output of the feature
interaction component as 𝒉.

2.2.3 Output Layer. The output layer of DRS model takes 𝒉 as
input and generates prediction 𝑦:

𝑦 = 𝜎 (𝑾𝑜𝒉 + 𝒃𝑜 ), (3)

where 𝑾𝑜 and 𝒃𝑜 are the weight and bias for the output layer.
Since our focus is CTR prediction task, the activation function 𝜎 is
𝑆𝑖𝑔𝑚𝑜𝑖𝑑 and the loss function is Logloss [3]:

min
Θ

L = − 1
𝐵

𝐵∑︁
𝑖=1

𝑦𝑖 log (𝑦𝑖 ) + (1 − 𝑦𝑖 ) log (1 − 𝑦𝑖 ) , (4)

where 𝑦𝑖 and 𝑦𝑖 are the ground truth label and predicted value
of the 𝑖-th sample, respectively. 𝐵 is the total number of training
samples and Θ = {𝑬 , 𝑳,𝑯 ,𝑶} is the set of all trainable parameters
in the DRS model.

3 PROPOSED METHOD
In this section, we first demonstrate the overall framework of
PLATE paradigm based on the aforementioned DRS model. After-
ward, the details of domain and user prompt modules and two-stage
optimization are given. Finally, we discuss the characteristics of
PLATE compared with previous MSR methods.

3.1 Overall Framework
To address the limitations of existing MSR methods, we propose
PLATE paradigm for multi-scenario CTR prediction, which is com-
patible with most mainstream DRS models under the aforemen-
tioned framework in Section 2.2. Since it is difficult and inefficient
to manually design hard prompt for this task, we introduce two
parameter-efficient soft prompts namely domain prompt and user
prompt into DRS model. Meanwhile, we introduce a two-stage op-
timization with pre-training and prompt tuning stages as shown
in Figure 2. In pre-training stage, all parameters including two
prompts are pre-trained on all-domain data. Afterward, in prompt
tuning stage, parameters of prompt and linear feature interaction
are fine-tuned on each domain. The choice of learnable parameters
are further discussed as Section 4.4.

3.2 Domain Prompt and User Prompt
It is of great significance but challenging to explicitly capture do-
main distinction and different user preferences across domains in
MSR. For one thing, contextual and user features are mostly treated
equally as other common features, whose embeddings are simply
concatenated and fed into feature interaction. As a result, the in-
formation from a unique user representation across domains is
neglected. For another, the implicitly learnt domain distinction may
be overwhelmed by unimportant features or information from the
dominant domain. To address these challenges, we propose two
parameter-efficient soft prompt modules, namely domain prompt
and user prompt. To be specific, domain prompt aims at extracting
domain heterogeneity, whilst user prompt aims at conducting per-
sonalized recommendation more accurately. Their combination acts
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Figure 3: Generative and Fusion architecture for user prompt.

as a bridge connecting global commonality and domain distinction
from different perspectives of user.

As for domain prompt, unlike multitudinous user and item fea-
tures along with their massive combination features, it is common
that the only contextual feature of domain is its ID, whose quantity
is far less. Thus in PLATE, an explicit domain prompt vector 𝑷domain
is simply encoded from the domain indicator 𝑑 as the unique repre-
sentation of each doamin. It has the same embedding dimension 𝑘
as other feature embeddings.

As for user prompt, employing informative user profile usually
leads to better personalization [18]. However, solely concatenating
embeddings of substantial user attributes to conduct user modeling
will bring nontrivial new parameters, thus extremely inefficient.
Hence, aiming at establishing a distinctive view of user, especially in
a parameter-efficient manner, we propose two architectures namely
Generative and Fusion to extract useful information from user
profile and generate soft user prompt. Their detailed architecture
are shown in Figure 3.

To be specific, the Generative architecture takes the concate-
nation of user feature embeddings 𝒆user profile = [𝒆𝑢1 ∥ . . . ∥𝒆𝑢𝑧 ] as
input, where 𝒆𝑢 𝑗

is the embedding of the 𝑗-th user feature and 𝑧 is
the number of user features. Then it passes on 𝒆user profile to anMLP
to automatically learn different user patterns, and directly outputs
the distinctive user prompt with dimension 𝑘 . In contrast, the Fu-
sion architecture also takes 𝒆user profile as input followed by an MLP,
but it outputs: (i) a prompt pool with 𝑅 meta-prompts 𝑴𝑷𝑟 and
(ii) the weighted values𝒘 = [𝑤1, . . . ,𝑤𝑟 , . . . ,𝑤𝑅] to fuse the meta-
prompts by attentive pooling to obtain the user prompt. The learnt
weight𝒘 is normalized by 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 function with temperature 𝜏
as a hyper-parameter.

𝑷user =
𝑅∑︁
𝑟=1

𝑤𝑟 ·𝑴𝑷𝑟 , (5)

𝑤𝑟 =
𝑒

1
𝜏
𝑤𝑟∑𝑅

𝑗=1 𝑒
1
𝜏
𝑤𝑗

, (6)

Specifically, the individual meta-prompt possesses the capability
of grasping the commonality among various user profiles. Further-
more, the pool of meta-prompts focuses on such commonality in

different level and granularity, which is learnt by attentive weight
𝒘 to generate user prompt from distinctive user perspectives [12].

After generating domain prompt and user prompt, they are con-
catenated as prefix to other feature embeddings as [𝑷domain∥𝑷user∥𝒆]
and fed into feature interaction component. By introducing these
two parameter-efficient soft prompts, the information on domain
heterogeneity and personalization context is explicitly injected into
behavioral and item-level information.

3.3 Two-stage Optimization
Since it is challenging for the prompt-enhanced model to fully cap-
ture distinction across domains in one-step learning on all-domain
data, whilst only based on single domain DRS backbone model, our
proposed PLATE paradigm consists of two stages: (i) pre-training
with prompt learning and (ii) prompt tuning. This two-stage opti-
mization enables PLATE to learn global domain correlation in the
former stage, then further capture distinction among domains in an
explicit view of users in the latter one. Specifically, in pre-training
stage, the parameters of prompt are synchronously updated, i.e.,
prompt learning, with all other parameters in DRS model using
all data from multiple domains. After that, in prompt tuning stage,
prompts are further tuned to adapt to each domain. To sum up,
domain prompt and user prompt are updated in both pre-training
and prompt tuning stage, interacting with other features to update
parameters in a domain-aware manner and thoroughly capture the
commonality and heterogeneity across domains and users.

In contrast, for transformer-based large-sized pre-trained model
in the community of Natural Language Processing and Computer
Vision [4, 9], prompt is only introduced in tuning stage when the
pre-trained model is applied to downstream tasks, thus being com-
pletely irrelevant to pre-training. Consequently, we also investigate
another way to incorporate prompt, i.e., freezing the prompt pa-
rameters in pre-training stage and fine-tuning them in tuning stage,
named as Prompt Tuning Enhancement (PTE) paradigm, as a vari-
ant of PLATE. To be specific, the loss function of PLATE is the same
as Equation (4), where we define the trainable parameters Θ as:

Θ =

{
{𝑷 , 𝑬 , 𝑳,𝑯 ,𝑶}, pre-training stage
{𝑷 , 𝑳}, prompt tuning stage

(7)

and the loss function of PTE also follows Equation (4), but the
trainable parameters Θ is defined as:

Θ =

{
{𝑬 , 𝑳,𝑯 ,𝑶}, pre-training stage
{𝑷 , 𝑳}, prompt tuning stage

(8)

From the Equation (7) and (8), we can observe that the only differ-
ence between PLATE and PTE is whether the prompts’ parameters
are frozen or tuned in pre-training stage. In comparison, previous
models for MSR either train all the parameters in one stage or pre-
train then fine-tune all parameters in two stages, which suffer from
low computing and storage efficiency.

Choice of Learnable Parameters. Apart from tuning the pro-
posed prompts, we also fine-tune the parameters (if applicable in
a given DRS model) calculating the first-order feature interaction,
i.e., the linear part 𝑳, because it probably possesses memorization
capability and reflects the distinction of domain distribution [6].
Notably, in the context of prompt-tuning, it is a common practice
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Algorithm 1: PLATE and PTE paradigm for multi-scenario
CTR prediction
Input: combination of user and item features 𝒙 ; domain

indicator 𝑑 ∈ {1, 2, . . . , 𝐷}; true label of click 𝑦
Output: well trained CTR prediction model for all domains
Stage 1: Pre-training with Prompt Learning

1 while not converge do
2 Sample a mini-batch data instances from training data

on all domains;
3 Calculate loss for PLATE via Equation (4) with

Θ = {𝑷 , 𝑬 , 𝑳,𝑯 ,𝑶}, or for PTE Θ = {𝑬 , 𝑳,𝑯 ,𝑶};
4 Take the gradient and update respective parameters;
5 end
Stage 2: Prompt Tuning

6 for 𝑑 = 1 to 𝐷 do
7 while not converge do
8 Sample a mini-batch data instances on domain 𝑑 ;
9 Calculate loss via Equation (4), where Θ = {𝑷 , 𝑳};

10 Take the gradient and update respective parameters;
11 end
12 end

to update a small number of additional parameters, such as the
head in VPT [15]. Therefore, it is reasonable to classify PLATE
(updating 𝑷 with 𝑳) as a member of the prompt-tuning field, rather
than pre-training&fine-tuning. In Section 4.4, we will empirically
discuss (i) the performance comparison between PLATE and PTE,
and (ii) the choice of learnable parameters in prompt tuning stages,
where we observe that updating 𝑷 and 𝑳 is the optimal solution.

Optimization Algorithm. Finally, the procedure of PLATE and
PTE is summarized in Algorithm 1. Specifically, in the first stage
of pre-training, a mini-batch of training data is sampled from all-
domain data (line 2); then we obtain loss via Equation (4) (line
3); next, the gradient is taken and PLATE updates all parameters
while PTE does not update 𝑷 (line 4). In the second stage of prompt-
tuning, for each domain 𝑑 the mini-batch is sampled from its own
data (line 8); afterward, only 𝑷 and 𝑳 are updated (line 9-10) by
calculating loss via Equation (4) for both PLATE and PTE.

3.4 Discussion
First, we compare PLATE paradigm with conventional MSR models
and discuss their characteristics.

PLATE v.s. Mix. Both of them commonly train on all-domain
data. Mix fail to take domain distinction into consideration, while
PLATE explicitly models domain heterogeneity with the updated
prompt in prompt tuning stage.

PLATEv.s. Pre-train&Fine-tune. Pre-train&Fine-tune is adapted
to each domain like PLATE, but it requires fine-tuning all parame-
ters resulting in low efficiency. In comparison, PLATE only tunes
a tiny portion (which will be detailed in Section 4.6) with the two
parameter-efficient soft prompts, which leads to far lower compu-
tation and model storage cost. In addition, Pre-train&Fine-tune is
unable to fix the common knowledge learnt from pre-training, thus
bringing about catastrophic forgetting. By contrast, in PLATE, the
global commonality is frozen in the majority of parameters and
domain heterogeneity is further captured in prompt tuning stage.

PLATE v.s. MTL. Both of them maintain shared and domain-
specific parameters to model domain commonality and distinction.
However, MTL usually adopts inflexible structure [30], where joint
learning becomes infeasible for a large number of domains. By
contrast, PLATE employs a flexible prompt-enhanced manner pos-
sessing great compatibility with mainstream DRS models.

Theoretically, PLATE does not explicitly take the difference of
high-order feature interactions across domains into prompt tuning
stage, because we argue that: first, in prompt tuning stage, only
considering difference across domains through prompt and linear
part in feature interaction has achieved state-of-the-art results from
the observation of following experiments; second, it enables low
cost of computation and model storage, since the domain-specific
models need to fine-tune and store the shared majority parameters
of the backbone model.

4 EXPERIMENTS
In this section, we conduct extensive experiments on public bench-
mark datasets to validate the effectiveness of our proposed PLATE
paradigm and answer the following questions:
• RQ1: How does PLATE paradigm perform compared with the
state-of-the-art baseline methods?

• RQ2: Is PLATE paradigm compatible and adaptive enough with
different DRS models?

• RQ3: What is the optimal solution of model parameters to be
fixed and updated in the pre-training and prompt tuning stage?

• RQ4:What are the effects of the proposed domain prompt and
user prompt module?

• RQ5: Does PLATE paradigm possess high computation and stor-
age efficiency?

4.1 Experimental Settings
4.1.1 Datasets. Our experiments are conducted on three datasets,
namely Douban [44], Amazon 5-core [26], and Ali-CCP [25], and
all these datasets have three domains. The dataset descriptions and
statistics, as well as the splitting for training, validation, and test,
are discussed in Appendix A.1.
4.1.2 Evaluation Metrics. As for evaluation metric, we apply
Area Under the ROC (AUC) and Logloss to evaluate the performance
of models on the test set. Specifically, a higher AUC value or a lower
Logloss at “0.001” level indicates significant better recommendation
performance [13], where the two-tailed unpaired 𝑡-test is performed.
4.1.3 Baselines. We compare PLATE with the following base-
lines: (i) Single trained only on each domain separately, (ii) Mix
trained on all data from multiple domains, (iii) Pre-train&Fine-
tune first pre-trained on all data then fine-tuned on each domain,
and (iv)MTL including Shared Bottom [5], OMoE [14],MMoE
[24], AITM [36], PLE [31], and STAR [30].

Notably, all existing prompt-based recommendationmodels (sum-
marized in Section 5.2) are designed for sequential recommenda-
tions, which is a different recommendation task with ours. Thus,
we exclude them in comparison. In addition, (i) - (iii) are applied
to backbone model in different experiments, e.g., DeepFM [13] in
Section 4.2. Their detailed descriptions are given in Appendix A.2.

4.1.4 Implementation Details. The implementation details of
PLATE are illustrated in Appendix A.3. The implementation code
is available to ease reproducibility1, 2.
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Table 1: Overall performance comparison. The backbone model is DeepFM [13]. Suffix ‘Fusion’ and ‘Gene’ indicate the Fusion
and Generative architecture generating user prompt. Boldface denotes the highest score and underline indicates the best result
of the baselines. ★ represents significance level 𝑝-value < 0.05 of comparing PLATE over the best baselines.

Models / AUC Douban Amazon 5-core Ali-CCP

Music Book Movie Clothing Beauty Health #1 #2 #3

Single 0.7666 0.7483 0.8181 0.6147 0.5989 0.6231 0.5873 0.5403 0.5854
Mix 0.7571 0.7373 0.8221 0.5949 0.6157 0.6382 0.6205 0.5945 0.6150

Pre-train&Fine-tune 0.7602 0.7381 0.8223 0.6259 0.6251 0.6365 0.6181 0.5950 0.6077
Shared Bottom 0.7718 0.7512 0.8191 0.6207 0.6073 0.6327 0.6155 0.5830 0.6075

MMoE 0.7777 0.7562 0.8217 0.6223 0.6023 0.6362 0.6175 0.5763 0.6123
OMoE 0.7763 0.7532 0.8218 0.6221 0.6088 0.6300 0.6153 0.5866 0.6110
AITM 0.7755 0.7540 0.8220 0.6215 0.6075 0.6337 0.6163 0.5635 0.6112
PLE 0.7780 0.7553 0.8220 0.6216 0.6089 0.6350 0.6184 0.5738 0.6101
STAR 0.7808 0.7563 0.8214 0.6272 0.6005 0.6341 0.6176 0.5817 0.6134

PLATE-Fusion (ours) 0.7918 0.7620 0.8250★ 0.6334★ 0.6376★ 0.6546★ 0.6219★ 0.5955★ 0.6166★

PLATE-Gene (ours) 0.7920★ 0.7629★ 0.8247 0.6327 0.6258 0.6507 0.6218 0.5927 0.6159

Models / Logloss Douban Amazon 5-core Ali-CCP

Music Book Movie Clothing Beauty Health #1 #2 #3

Single 0.5049 0.5326 0.5008 0.7395 0.6516 0.5491 0.1710 0.2626 0.1620
Mix 0.5028 0.5262 0.4989 0.5342 0.4950 0.4381 0.1656 0.1802 0.1595

Pre-train&Fine-tune 0.4873 0.5189 0.4984 0.6126 0.5329 0.4968 0.1665 0.1797 0.1627
Shared Bottom 0.5069 0.5231 0.5085 0.5163 0.4913 0.4230 0.1663 0.1820 0.1597

MMoE 0.4792 0.5196 0.5012 0.5189 0.4951 0.4221★ 0.1653 0.1886 0.1591
OMoE 0.4991 0.5217 0.4990 0.5172 0.4822 0.4273 0.1658 0.1814 0.1591
AITM 0.4805 0.5192 0.5028 0.5188 0.4877 0.4236 0.1654 0.2000 0.1596
PLE 0.4881 0.5228 0.5008 0.5195 0.4889 0.4231 0.1652 0.1922 0.1590
STAR 0.4876 0.5212 0.5065 0.5473 0.5017 0.4333 0.1677 0.1817 0.1625

PLATE-Fusion (ours) 0.4762★ 0.5206 0.4935★ 0.5041 0.4521★ 0.4397 0.1651 0.1791 0.1594
PLATE-Gene (ours) 0.4772 0.5182★ 0.4947 0.5012★ 0.4556 0.4354 0.1651 0.1782★ 0.1588

4.2 Comparison with Baseline Methods (RQ1)
The overall performance of PLATE and baselines are listed in Table 1.
For all three datasets, we choose the widely used DeepFM [13] as the
backbone model of PLATE, Single, Mix, and Pre-train&Fine-tune.

From Table 1, two shortcomings of previous MSRmethods can be
observed. First, pre-train and fine-tune may suffer from disastrous
forgetting shown in the #1 and #3 domain in Ali-CCP. Second,
in the six MTL frameworks, STAR achieves the best performance
since it simultaneouslymodels domain commonality and distinction
by maintaining shared centered and domain-specific parameters.
By contrast, other five models except Shared Bottom implicitly
model domain relations (e.g., adopting a gating network), while
their performances reveal its inferiority.

In comparison, PLATE surpasses all state-of-the-art baselines
on all three datasets and guarantees improvement on all domains
except the Logloss in the Health domain on Amazon 5-core. It is
able to address these limitations because: (i) the global information
of commonality learned in pre-training stage is fixed and retained
in prompt tuning stage; and (ii) the domain heterogeneity and per-
sonalization across domains are explicitly modeled, demonstrating
the effectiveness of prompt modules and two-stage optimization.
In addition, the designed Fusion structure illustrates its superiority
over the Generative manner in most cases. This is probably because
the pool of meta-prompts explicitly considers commonality in dif-

ferent level and granularity among users, thus generating more
informative user prompt.

To summarize, PLATE achieves significantly better performance
than the state-of-the-art baselines on all domains and datasets on
DeepFM as backbone, demonstrating its effectiveness.
4.3 Compatibility with DRS Models (RQ2)
By design, our proposed PLATE is able to adapt to most DRSmodels,
and enhance their capability of multi-domain modeling. Therefore,
apart from DeepFM, we also demonstrate PLATE’s compatibility
with four other state-of-the-art backbonemodels, i.e., xDeepFM [21],
Wide&Deep [6], DCN [32], and FNN [40] on all three datasets.

To be specific, we compare the prompt enhanced model using
two proposed user prompt generation methods with the pre-train
and fine-tune paradigm. From Table 2, we can observe that: (i) with
the proposed PLATE paradigm, the performance on all CTR predic-
tion backbone models is improved. This demonstrates that PLATE
has a remarkable ability to grasp domain difference while fixing
common knowledge learned across domains with the introduced
prompt modules and two-stage learning. (ii) For Douban dataset,
the improvement on the Movie domain on all backbones is far less
than that of two other domains, which may result from the large
data volume of the Movie domain dominating the model.

In summary, PLATE possesses great compatibility and effective-
ness on various DRS backbone models.



PLATE: A Prompt-Enhanced Paradigm for Multi-Scenario Recommendations SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

Table 2: The compatibility experiments on different backbones on Douban, Amazon 5-core, and Ali-CCP dataset

Backbone Paradigm Douban Amazon 5-core Ali-CCP

Music Book Movie Clothing Beauty Health #1 #2 #3

xDeepFM
Pre-train&Fine-tune 0.7717 0.7451 0.8246 0.6288 0.6151 0.6378 0.6202 0.5914 0.6161
PLATE-Fusion (ours) 0.7840 0.7585 0.8250 0.6314 0.6194 0.6445 0.6223 0.5963 0.6165
PLATE-Gene (ours) 0.7799 0.7513 0.8241 0.6288 0.6264 0.6448 0.6217 0.5949 0.6162

Wide&Deep
Pre-train&Fine-tune 0.7693 0.7469 0.8220 0.6261 0.6287 0.6394 0.6202 0.5901 0.6143
PLATE-Fusion (ours) 0.7842 0.7572 0.8232 0.6321 0.6308 0.6497 0.6225 0.5957 0.6161
PLATE-Gene (ours) 0.7889 0.7598 0.8230 0.6304 0.6306 0.6498 0.6220 0.5990 0.6161

DCN
Pre-train&Fine-tune 0.7711 0.7470 0.8270 0.6283 0.5850 0.6192 0.6212 0.5941 0.6168
PLATE-Fusion (ours) 0.7722 0.7499 0.8262 0.6323 0.6013 0.6205 0.6240 0.5986 0.6196
PLATE-Gene (ours) 0.7748 0.7526 0.8271 0.6301 0.6012 0.6229 0.6214 0.5970 0.6165

FNN
Pre-train&Fine-tune 0.7658 0.7443 0.8243 0.6287 0.6177 0.6385 0.6208 0.5940 0.6167
PLATE-Fusion (ours) 0.7702 0.7542 0.8243 0.6323 0.6185 0.6404 0.6221 0.5972 0.6169
PLATE-Gene (ours) 0.7691 0.7519 0.8246 0.6300 0.6117 0.6408 0.6217 0.5965 0.6164

Table 3: Comparison of PTE and PLATE on Douban, Amazon
5-core, and Ali-CCP datasets

.
Paradigm Douban Amazon 5-core Ali-CCP

Music Book Movie Clothing Beauty Health #1 #2 #3

PTE-Fusion 0.7877 0.7588 0.8243 0.6304 0.6325 0.6533 0.6217 0.5962 0.6158
PTE-Gene 0.7879 0.7610 0.8243 0.6313 0.6297 0.6484 0.6211 0.5909 0.6161

PLATE-Fusion 0.7918 0.7620 0.8250 0.6334 0.6376 0.6546 0.6219 0.5955 0.6166
PLATE-Gene 0.7920 0.7629 0.8247 0.6327 0.6258 0.6507 0.6218 0.5927 0.6159

Music Book Movie
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Figure 4: Component study on PLATE and PTE on Douban
dataset, +means different combinations of fixed and tuned
parameters. Suffix ‘Fusion’ and ‘Gene’ indicate the Fusion
and Generative architecture generating user prompt. We use
the ratio improvement of the AUC of the current model
compared to the AUC of the baseline Finetune (DeepFM).

4.4 Component Analysis (RQ3)
We conduct numerous experiments to decide (i) whether to update
or freeze prompt in pre-training stage (PLATE v.s. PTE), and (ii)
what is the optimal combination of parameters fixed and tuned
with prompt in tuning stage. Details are described as follows:
• PLATE (Prompt Learning And Tuning Enhancement): updating
all parameters at pre-training stage.

• PTE (Prompt Tuning Enhancement): freezing the prompt param-
eters in the pre-training stage and only fine-tuning them in the
prompt tuning stage.

• 𝑷 , 𝑳, 𝑶 : exploring different combinations of fixed and tuned
parameters where 𝑷 denotes prompt, 𝑳 denotes the linear part,
and 𝑶 denotes the output layer.

The results are shown in Table 3 and Figure 4. We can observe that:
First, refering to Table 3, PLATE is better than PTE in most cases

only except on domain #2 in Ali-CCP. We attribute the superiority
of PLATE to prompt learning in pre-training stage, which better
extracts the commonality and distinction of users and items across

Music Book Movie

Douban: AUC Dec(%)

0.004

0.003

0.002

0.001

0.000

w/o Pdomain
w/o Puser

Clothing Beauty Health

Amazon 5-core: AUC Dec(%)

0.020
0.015
0.010
0.005
0.000

Figure 5: Ablation study on prompt module of PLATE on
Douban and Amazon 5-core, w/o means removal of corre-
sponding component. We use the ratio decrease of the AUC
of the current model compared to the AUC of the full model.
different domains by learning the introduced domain prompt and
user prompt. In contrast, freezing the prompt in pre-training stage
may hinder the capability to do so in a domain-aware manner.

Second, refering to Figure 4, in tuning stage, updating linear part
with prompt parameters performs better than other combinations. A
possible explanation is the distribution of linear feature interaction
in each domain varies while the majority of common knowledge
learned from multiple domains are fixed in other parts of model,
like FM. Meanwhile, unlike the prompt tuning methods in other
communities [15], it is better not to further fine-tune the output
layer with prompt in our multi-scenario CTR prediction problem.
We speculate the reason is that the output layer plays the role of
generalization and balance on all domains, thus further updating it
on each domain may dampen this ability.

4.5 Ablation Study (RQ4)
To verify the effectiveness of the prompt modules and answer RQ4,
we conduct a series of ablation studies on the three datasets. We
also take DeepFM as the backbone with user prompt generated by
Fusion structure and the results are shown in Figure 5 for Douban
and Amazon 5-core dataset.

We can observe that, both domain prompt and user prompt
have significant contribution to our proposed PLATE paradigm
only except for the #2 domain on Ali-CCP. In contrast, for PTE
the same conclusion holds, except on Ali-CCP that is better to
apply user prompt only. Since the domain prompt and user prompt
are just concatenated as prefix to the embedding of other features,
the combination and interaction of different prompt needs further
investigation in the future.
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Figure 6: Analysis on the number of meta-prompts.
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Figure 7: Analysis on the temperature coefficient.
4.6 Efficiency Analysis (RQ5)
For the number of parameters tuned, taking DeepFM as an example:
the pre-train and fine-tune paradigm tunes 100% of parameters;
in contrast, our proposed PLATE paradigm only needs to tune
6.36%(0.54%), 5.95%(0.10%), and 4.45%(0.17%) of parameters on
Douban, Amazon 5-core, and Ali-CCP with better performances,
where the number in parenthesis denotes the proportion of in-
troduced prompt of all parameters. We can see that in the tuned
parameters, the majority is the linear feature interaction compo-
nent and the introduced prompt only accounts for a tiny proportion.
Consequently, for different domains, a single model with different
domain-specific parameters can be retained with ease. In contrast,
multi-task framework needs to maintain multiple towers. Thus, it
is even no longer applicable for a large number of domains.

On the other hand, PLATE also exhibits competitive or even
superior training efficiency, especially when faced with numerous
domains in commercial recommender systems. In practice, on the
original Amazon3 dataset with 24 domains and using DeepFM
as backbone model, the computing consumption (i.e., GPU hour)
of the following models is: Single (24), Pre-train&Fine-tune (9),
Shared Bottom (6), MMoE (8), PLE (12), STAR (6), PLATE (6). We
can observe that the computational cost of PLATE is the same with
Shared Bottom (a simple model) and STAR (a commercial model),
and is much less than other models.

To summarize, equipped with high parametric and computation
efficiency, PLATE proved to possess the potential to be deployed
into real-world commercial systems with numerous domains.
4.7 Hyper-parameter Analysis
Based on Douban dataset, we analyze the hyper-parameters of
PLATE, including the number of meta-prompts and the tempera-
ture coefficient in Fusion structure generating user prompt. Specifi-
cally, the number of meta-prompts is varied from 2 to 24 and the
temperature coefficient is ranged from 1e-1 to 1e-7. The results
are shown in Figure 6 and 7. It can be observed that, as the num-
ber of meta-prompts increases to 10 the performance is improved,
since more abundant information can be captured. However, the
performance decreases as more meta-embeddings join in, which
also brings about higher computation cost. Meanwhile, the tem-
perature coefficient controls the distribution of weight averaging
meta-prompts, thus it has a significant impact on capturing user
distinction. We find the optimal global temperature is around 1e-5.

5 RELATEDWORK
This section provides a brief summary of recent work on multi-
scenario recommendation and prompt tuning for recommendation.

3https://jmcauley.ucsd.edu/data/amazon/

5.1 Multi-Scenario Recommendation
Multi-scenario recommendation [19, 33, 42] leverages data from all
domains and simultaneously increases the recommendation accu-
racy in these multiple domains. STAR [30] proposes a star topology
architecture with a single shared centered fully connected network
multiplied by many domain-specific fully connected networks for
multi-domain CTR prediction. SAR-Net [29] proposes two attention
layers to capture users’ cross-scenario interest transfer along with
scenario-specific and scenario-shared experts. M2M [39] designs
a Multi-level Meta Unit to explicitly learn domain-related meta-
knowledge and utilizes meta mechanism to simultaneously model
multi-scenario and multi-task.

Facing the shortcomings of the above methods introduced in
Section 1, i.e., ignoring domain distinction, high computation and
storage cost, disastrous forgetting, and poor deployability, our pro-
posed prompt learning and prompt tuning enhancement paradigm
exploits domain prompt and user prompt in two-stage optimization.
Not only can it explicitly capture domain commonality and hetero-
geneity in a more personalized and domain-aware manner, but it
also leads to high computation and storage efficiency with SOTA
performance and great compatibility with various DRS models.
5.2 Prompt Tuning with Recommendation
Facing the difficulty of fine-tuning large-sized transformer-based
pre-trained model on downstream tasks, the concept of prompt
tuning is first raised in [22]. Generally, prompt is a piece of text
prepended to original input to guide the downstream tasks to adapt
to the pre-trained model. Prompt tuning focuses on learnable em-
beddings known as soft/continuous prompt, which are directly
optimized via gradients during fine-tuning [17, 23]. For example,
VPT [15] uses a fixed pre-trained ViT backbone with learnable task-
specific prompts into the input space and its performance surpasses
the fine-tuning protocol.

Several works try to incorporate prompt with recommendation
[37]. One of the solutions is to naturally resort to successful large
Pre-trained Language Model (PLM). PEPLER [18] employs item fea-
tures as discrete prompt and ID embeddings as continuous prompt
to generate recommendation explanation. P5 [11] designs a col-
lection of personalized hard prompts and integrates five recom-
mendation task families into a unified conditional language gener-
ation framework. M6-Rec [8] also acts as a foundation model using
prompt tuning with soft options and adapters. PPR [35] first pre-
trains a transformer-based recommendation model, then conducts
personalized prompt tuning to address cold-start recommendation.

However, all the aforementioned methods apply prompt tuning
with transformer-based pre-trained models for sequential recom-
mendations. In this paper, we are the first to investigate a new
prompt tuning paradigm combining soft prompt with typical DRS
architecture introduced in Section 2.2.
6 CONCLUSION
In this paper, we propose a Prompt Learning And Tuning Enhance-
ment (PLATE) paradigmwith newly introduced domain prompt and
user prompt to conduct multi-scenario CTR prediction in a more
personalization and domain-aware manner, which is compatible
with various single domain DRS models. Extensive experiments
on Douban, Amazon 5-core, and Ali-CPP datasets show that our
method surpasses state of art baselines with low computational and

https://jmcauley.ucsd.edu/data/amazon/
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Table 4: The statistics of Douban, Amazon 5-core, and Ali-CCP

.

Dataset Douban Amazon 5-core Ali-CCP-Train Ali-CCP-Test

Domains Music Book Movie Clothing Beauty Health #1 #2 #3 #1 #2 #3
Users 1672 2110 2718 39387 22363 38609 80704 1986 136406 47400 1156 73924
Items 5567 6777 9565 23033 12101 18534 297046 109259 297733 291213 103080 295281

Interactions 69709 96041 1133420 278677 198502 346355 15885371 318873 26095661 16351580 321024 26344010
Sparsity 25.43% 27.94% 39.09% 20.48% 22.28% 19.22% 96.00% 95.63% 96.18% 95.99% 95.61% 96.19%

memory cost. Our work also raise some intriguing problems to be
solved in the future. For example, compared with transformer-based
large-sized pre-trained models, in the proposed prompt-enhanced
paradigm, the position of prompt with fixed length needs to be
reserved before pre-training. Consequently, the design of prompt
can be optimized according to the task and domain in advance.

A EXPERIMENTAL SETTINGS
A.1 Datasets
The statistics of three datasets are illustrated in Table 4.
• Douban4. This dataset is crawled from Douban and only users
are overlapped in three domains. We randomly divide data into
training set, validation set, and test set with the ratio of 8:1:1 on
each domain with random seed 0. Only user ID, item ID, domain
ID, and ratings are used. Specifically, rating is ranged from 1 to 5
and our goal is to predict whether a user gives a rating higher
than 3 to an item.

• Amazon 5-core5. It is a dense subset from Amazon in which
each user and item has at least 5 related records. We choose three
related domains same as the task 2 in experiments conducted by
HeroGRAPH [7]. There are both overlapped users and items in
three domains. By convention, the time range of validation set is
between 1st March 2014 and 30th April 2014, while the records
before 1st March 2014 and after 30th April 2014 are counted
as training set and test set, respectively. Only user ID, item ID,
domain ID, and ratings are used. Similarly, records with rating
greater than 3 are considered as positive samples.

• Ali-CCP6. It is collected from the real traffic logs from Taobao’s
recommendation system. The original dataset already consists of
train and test set split by time. We consider the label of click as
target and utilize 15 categorical features with 9 user features, 5
item features, and 1 context feature as domain ID.

A.2 Baselines Models
Apart from Single,Mix, and Pre-train&Fine-tune, we compare
our proposed PLATE paradigm with the following MTL baselines:
• Shared Bottom is a multi-task model with shared parameters
of bottom layers. In implementation, we follow the convention
that the embedding layer is shared on which one specific fully-
connected network is built for each domain.

• OMoE [14] is a multi-task model with a group of expert networks
and a gating network ensembling the results from all experts.

• MMoE [24] is a multi-task model based on Shared Bottom. It has
a group of bottom networks called expert instead of only one
bottom network and learns a separate gating network to select a
subset of experts for each task.

4https://github.com/FengZhu-Joey/GA-DTCDR/tree/main/Data
5http://jmcauley.ucsd.edu/data/amazon/
6https://tianchi.aliyun.com/dataset/dataDetail?dataId=408

• AITM [36] is a multi-task model and it proposes a Adaptive
Information Transfer (AIT) module to learn what and how much
information to transfer with sequential dependence.

• PLE [31] is a multi-task model which separates the task-shared
experts and the task-specific experts and explicitly employing a
progressive routing mechanism.

• STAR [30] is a multi-domain model with star topology fully-
connected network, which consists of shared centered and do-
main specific factorized networks.
For multi-scenario recommendation, it has become a trend to

build a unified multi-task framework and treat different domains as
different tasks to learn their commonalities and correlations [42].
Table 5: The hyper-parameter settings in our experiments

.

Dataset Douban Amazon 5-core Ali-CCP

Embedding dimension (𝑘) 16 16 20
Batch size 512 2048 6000
Hidden layers of DRS [16,16] [64,64] [256,128,64]
Hidden layers for 𝑷user [32,32] [32,32] [128,64]
Number of meta-prompts (𝑅) 10 10 20
Learning rate of train 2e-3 1e-2 5e-4
Learning rate of test 5e-3/5e-4 5e-3 5e-4
𝐿2 regularization 1e-5 1e-5 1e-5
Dropout 0.2 0.2 0.2

A.3 Implementation Details
All models are trained with Adam [16] optimizer to minimize the
binary cross entropy loss and the hyper-parameters are listed in
Table 5. In the table, Hidden layers represent the structure of hidden
layers of deep network in recommendation model, while hidden
layers in prompt represent the structure of network generating
user prompt. Meanwhile, ReLU is used as activation function ex-
cept in output layer. In addition, the test learning rate in Douban
experiment is 5e-3 for the first two domains and 5e-4 for the last
domain of movie. For the prompt generation, it is notable that
only the embedding of user ID is used for Douban and Amazon
5-core while the embeddings of 9 user features are applied for Ali-
CCP. Meanwhile, the domain prompt is randomly initialized by
𝑥𝑎𝑣𝑖𝑒𝑟_𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 while user prompt is initialized by zero. Finally,
all the reported results are averaged over 3 runs.
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