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Abstract— Destination prediction is an essential task for many use of historical trajectories of the public, available nfro
emerging location based applications such as recommendingtrajectory sharing websites [1], [11], [23], or large setsaxi

sightseeing places and targeted advertising based on dewttion.
A common approach to destination prediction is to derive the
probability of a location being the destination based on hisrical
trajectories. However, existing techniques using this appach
suffer from the “data sparsity problem”, i.e., the available
historical trajectories is far from being able to cover all possible
trajectories. This problem considerably limits the number of
query trajectories that can obtain predicted destinations We
propose a novel method name@ub-Trajectory Synthesis (SubSyn)
algorithm to address the data sparsity problem. SubSyn algo
rithm first decomposes historical trajectories into sub-trajectories
comprising two neighbouring locations, and then connectshe
sub-trajectories into “synthesised” trajectories. The nunber of
query trajectories that can have predicted destinations isex-
ponentially increased by this means. Experiments based oreal
datasets show that SubSyn algorithm can predict destinatius for
up to ten times more query trajectories than a baseline algathm
while the SubSyn prediction algorithm runs over two orders d
magnitude faster than the baseline algorithm. In this paperwe
also consider the privacy protection issue in case an adves/

trajectories [22]. If an ongoing trip matches part of a papul
route derived from historical trajectories, the destioatof
the popular route is very likely to be the destination of
the ongoing trip (we refer to the ongoing trip as theery
trajectory). Shown in Fig. 1 are five historical trajectories:
Ty = {li,l2,15,l6,lo}, To = {ls,13,12}, T3 = {la, 15,18},

Ty = {lg,ls,l7}, and Ts = {l1,l4,17}. Each trajectory is
represented by a different type of line. For instance, aifip
taken froml; to l4, and this query trajectoryl;, 4} matches
part of the historical trajectorys. Therefore, the destination of
Ts (i.e.,l7) is the predicted destination of the query trajectory.
In practice, each trajectory here may be associated with a
weight denoting the number of historical trajectories that
exactly match this one, and the most popular trajectories ar
used for destination prediction. This idea has been de=ttrib
in further details in [31].

uses SubSyn algorithm to derive sensitive location inforntion G O o —1T;
of users. We propose an efficient algorithm to select a minimm l1 lo I3} o -1,
number of locations a user has to hide on her trajectory in --= Ty
order to avoid privacy leak. Experiments also validate the figh -T,
efficiency of the privacy protection algorithm. O : -T.
l l5 l
|. INTRODUCTION : 5 6
As the usage of smart phones and in-car navigation systems :( :'@ ﬂ

becomes part of our daily lives, we benefit increasingly from 5‘\\\\\\\\\\5\\\\\\\\\\\\O
various types of location based services (LBSs) such ag rout l7 ls ly
finding and location based social networking. A number of Fig. 1. An example of destination prediction

new location based applications requitestination prediction However, the above method has a significant drawback.
for example, to recommend sightseeing places, to sendéargeA location I can be predicted as a destination only when
advertisements based on destination, and to automatic thet query trajectory matches a historical trajectory arel th
destination in navigation systems. Fig. 1 provides a scliemadestination of the historical trajectory isIn practice,ls and
with the lines representing roads and the circles repragently are also very likely to be the destination of the query
locations of interests (They may be road intersectiondtsigtrajectory, but will not be recommended to the user due to
seeing places, shopping centres, etc.). If one drives fiolm the limitation of the historical dataset. Moreover, if theeqy
l4, an LBS provider may predict the most probable destinatiotrajectory continues té;, the above method will not be able to
to belz, ls andly based on past popular routes taken by otheredict any destination since no historical trajectorytaors
drivers. As a result, the LBS provider can push advertisémethe trajectory{i,,l4,5}. We refer to this phenomenon as the
of products currently on sale at those locations. data sparsity problem. This problem is inevitable in practice
A common approach to destination prediction is to maladue to the following reasons. First, given a road network,
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address, an adversary can predict her destination tg b&ng
FREQUENTLY USED SYMBOLS

SubSyn algorithm. Trajectory sharing websites and trajgct

Symbol | Explanation publication for data mining purposes also pose similar dasg
ls,leylg Starting, current, destination locations _In this paper, we also investi_gatg on hOW '.[0 cou_nter any
) The historical rajectory dataset privacy _breach caused by _destlnatlon prediction using-algo
p Grid size of a grid graph rithms _Ilke SubSyn. In par_t|cular, a user may choose_ not to
(e me.ng) | @ (starting, current, destination) node check |n.((.)r publish) c_ertalln locations to prevent adveesar
Pii Transition probability from; to adjacents; from deriving her destination. In the previous example, the
Diok Total transition probability from; to ny user may manually. _choose not to check in@in order to
Tiih) Trajectories inD that contain{n:(,n;)} reduqe the probability (_3?9 being thg destination below a
Taen, Trajectories inD with destination lying inn; certain threshold. To mitigate the disturbance to the check
T? Partial trajectory fromn, to n. in service, we study which locations in the trajectory therus
Lssa Length of T4 in ¢; space grid graph should not check in such that the number of locations that the
Lac,c—a Detouring distance from. to ng user does not check in is minimised.

M, M, Transition matrix and its entry We make the following specific contributions in this paper:

o We identify the data sparsity problem in destination
prediction and propose a novBlb-Trajectory Synthesis
(SubSyn) algorithm to address this problem. SubSyn
algorithm decomposes historical trajectories into sub-
trajectories and connect them into “synthesised” trajecto
ries for destination prediction. This process is formudate
based on a Markov model.

SubSyn algorithm also achieves very high runtime ef-

ficiency because most values are directly fetched from

pre-computed matrices. This is much faster than the
baseline algorithm, which has to perform a large number
of computation in order to find all matching trajectories.

« Concerned with potential privacy leak from abusive use
of SubSyn algorithm, we further propose an algorithm
named End-Points Generation Method to help identify
locations on a trajectory which a user should not publish
in order to retain confidential locational information.

« We conduct extensive experiments using real taxi trajec-
tory datasets to investigate the effectiveness and eftigien
of both SubSyn algorithm and the End-Points Generation
Method for privacy protection. The results show that:

— compared with a baseline algorithm, SubSyn algo-
rithm can predict destinations for up to ten times
more query trajectories while the SubSyn prediction
algorithm runs over two orders of magnitude faster.

— compared with a naive algorithm, the End-Points
Generation Method is more than two orders of mag-
nitude faster.

the number of possible routes between all pairs of origin-
destination is prohibitively large (exponential to the raenof
edges in the network) and currently the largest availakdé re
life trajectory dataset covers only a tiny portion of it. Sed,
even trips with the same origin-destination pair may vary on
their routes, making it unlikely to have identical trajeti¢s.

In this paper, we propose a novel method to address the,
data sparsity problem. To begin with, we decompose all the
trajectories into sub-trajectories comprising two neiginting
locations, then the sub-trajectories are connected tegéito
“synthesised” trajectories. As long as the query trajsctor
matches part of any synthesised trajectory, the destmatio
the synthesised trajectory can be used for destinationgred
tion. By this means, the coverage of trips on which we can
make destination predictions is exponentially increaSeue
underlying process is formulated by a Markov model quantify
ing the correlation between adjacent locations with tit#osi
probabilities. We can compute the probability of reachilig a
the reachable locations from a given origin, and the topednk
ones are returned as predicted destinations. We call theeabo
method theSub-Trajectory Synthesis(SubSyn) algorithm. For
the aforementioned query trajectofys,l4,15,1ls}, SubSyn
algorithm will be able to predict other destinations such as
ls andly since they can be synthesised using sub-trajectories
of Ty, Ts, andT5. The outcome of the destination prediction
process will depend on the transition probabilities and the
number of top destinations to be returned).

While SubSyn algorithm largely enhances the destination ) ) .
prediction capability of LBS providers, it can also be used 1he remainder of the paper is organised as follows: Sec-
by a malicious party to derive destinations which users di9n !l discusses related work and preliminaries. Our pegb
not wish to disclose such as homes and hospitals. LocatigHPSYn algorithm is presented in Section Iil. Section IV
based social networks such as Foursquare and Facebook PIREgS€Nts the privacy issue and our algorithm for privacy
allow users to automatically check in at locations they haR§otection. Experimental results are reported in Section V
visited [5], [8]. Using Fig. 1 as an example, a user leaves hgpctlo_n VI concludes the paper. Frequently used symbols are
workplace at; and goes to a restaurantiat then goes to a iSted in Table I.
café atlg before heading home &. She checks in at, I4
andls sequentially. This allows for her trajectofy, l4, s}
to be revealed publicly on the social network. Supphses In this section, we first discuss existing work on destimatio
a popular living area and plenty of historical trajectorggs prediction. Then we focus on a Bayesian inference based
to lg from lg; even though she does not check in at her hona@proach to the destination prediction problem. Finallg w

II. RELATED WORK AND PRELIMINARIES



discuss the protection of users’ privacy in trajectory bl "

tion.

P14

A. Destination Prediction n4

Although most destination prediction studies make use of =To

o . . . . : —T
historical trajectories, thelr_focuses_ haye ma|_n_ly foldmi/_\f:wo ne ng | o o T
streams: (i) using external information in addition to bigtal ) SR S --= T3
trajectories to help improve the accuracy of predictedidest “‘:;4
nations; (ii) personalised destination prediction foriudlal (8) 3 x 3 grid on the example (b) 3 x 3. Markov model

users. We describe each stream in more details below.
Employing external information in addition to historical Fig. 2. Grid graph representation and Markov model .

trajectories can often enhance the prediction accuracy. EQUr approach also follows this framework. In the following

example, the distributions of different districts (i.erognd Subsection, we describe the Bayesian inference framework i

cover), of travelling time, of trajectory’s length [14]-], ™More de_talls and present a naive destination predlc_tlohcmlet

the accident reports, road condition, and driving habit§,[3 underth|sf_rame_work. It will pe adapted to the baseline méth

have been incorporated into Bayesian inference to compifé comparison in our experimental study.

the predicted probability of destinations. Similarly, text

information such as time-of-day, day-of-week, and velpbas

been incorporated as the features in training the Bayesitn n Most studies [15], [28], [31] using the Bayesian inference

work model for prediction [10]. The major inspiration betiin have employed a grid representation of the data space includ

these studies is that certain travelling pattern whichfits the ing the road network as follows. The map is constructed as

acknowledged external settings shall bring higher podsilsi a two-dimensional grid consisting @f x ¢ square cells. The

to locations corresponding to those external settings e thranularity of this representation is a cell, i.e., all thedtions

historical dataset. However, since these studies mairdysfo within a single cell are considered to be the same object.

on the benefits brought by external information, their Sohg Each cell has the side length of 1 and adjacent cells have the

are of little interest in the absence of the aforementiorded adistance of 1. The whole grid is modelled as a graph where

hoc external information. Our work considers a generidgragtt each cell corresponds to a node in the graph. A trajectory

where only a historical trajectory set is assumed, and atusfo can be represented as a sequence of nodes according to the

is to solve the data sparsity problem which cannot be solyed $equence of locations of the trajectory. An example 8fa3

just adding external information. Therefore, the aboveliss grid graph is given in Fig. 2a, where the trajectdfy can

are not applicable to our problem. be represented aéni,nq,ns,n6,n9}. By representing the
Personalised destination prediction trains predictiordmotrajectories using nodes in a grid graph, similar trajéesor

els using historical trajectories from an individual an@rth are considered identical because a cell is the granulafity o

predicts destinations for this same individual. Thus, ¢hethe graph. For example, in Fig. 2&, and 75 are identical,

predictions for the same query trajectory from differentrss both of which are represented &s4,ns,ng}. It is easy to

may vary. Natalia and Chris [18] and Patterseinal. [21] observe that when the area of each grid cell becomes smaller,

used a Bayesian method to predict destination for speciffee different trajectories become more distinguished feawh

individuals based on their historical transport modes.Kdar other in the grid graph model.

model has been widely applied in predicting destinations fo Since query trajectories are incomplete trajectories whos

a specific individual as well [3], [4], [17], [24]. Tiesyte dn destinations should be predicted by prediction algorithwes

Jensen [26] proposed Mdearest-Neighbour TrajectorfNNT) denote them bypartial trajectories i.e., T?. With a grid

method that utilised distance measures to identify thehstl representation, two trajectorid§ and 7; have exact match

trajectory which was the most similar to the current partiabith each other if and only if their sequences of nodes are

trajectory. Cheret al. [7] used a tree structure to represententical, denoted by} = T5; a partial trajectoryl’? partially

the historical movement patterns and then matched therturrmatchesa trajectory?” if and only if their sequences start

partial trajectory by stepping down the tree. All these &sd from the same node and the node sequenc&?fis fully

focused on predicting the repeated destinations of one aantained by the node sequencelaf denoted byl? C T.

a group of specific individuals based on their own habite the example shown in Fig. 2&? = {ni,n4.} partially

and historical travelling records. Our work considers arguematchesls = {ny, n4, n7}.

trajectory from an unknown individual (without availablerp The Bayesian inference framework for destination predic-

sonalised information). This is different from the perdm®l tion problem contains two major phases:training phase

destination prediction studies. Therefore their soligimmmuld where the historical trajectories are mined offline and a

be inapplicable to the data sparsity problem. prediction phasewvhere a given query trajectory is analysed
Amongst the above studies, Bayesian inference is the mastd answered with predicted destinations online [15], ,[16]

popular framework used for deriving the probability of deast [29], [31]. Specifically, the probability of a node; being the

tions based on historical trajectories [15], [16], [18]1]2431]. destination can be computed as the probability thyatontains

B. Bayesian Inference Framework for Predicting Destinatio



the destination locatiohy, conditioning on the query trajectorystudy on privacy protection against destination predicties
TP. Formally, the probability is computed using Bayer’s rulén the third group since it attempts to delete locations & th

as P(T?|d € ny)P(d € ny) guery trajectories _to alter the_ p_rediction res_ult. Theatdéhce
P(d € nj|T?) = — / 1 , (1) between our studies and existing studies is that we focus on

>. P(Tr|d € nk)P(d € ny) preventing locations with privacy concerns from appeaiing
1<k<g? the prediction results produced by SubSyn algorithm, where

where the prior probability?(d € n;) can be easily computedwe are able to leverage the distinct property that only end-
as the number of trajectories terminatingrgtdivided by the points of a trajectory would affect the prediction results i

number of trajectories in the dataset. Formally, order to dramatically eliminate unnecessary search space.
|Taen,| vacy protection and trajectory mining have also been studie
P(d € ny) = |D| @ in other contexts such as moving KNN query [12], [20] and
where |D| is the cardinality of the training datasé, and 9rouP NN query [13].
[Taen,]| is the number of trajectories i that terminates at 1. DESTINATION PREDICTION BASED ON
a location inn;. As indicated by (2), only locations that are SUB-TRAJECTORYSYNTHESIS

the destinations of historical trajectories will have rmero
prior probabilities, reflecting the fact that only locatsthat
are popular among users are of interests.

Therefore, the problem lies in computing the posterior pro

In order to overcome the data sparsity problem, we propose
a novel Sub-Trajectory Synthesis(SubSyn) algorithm, which
yses a Markov model to offline prepare the probabilities

ability P(T”|d € n;). Ziebartet al. [31] described a method needed to efficiently compute the posterior probability for

which first counts the number of trajectories satisfying wdy given query trajectory online. Following the general

conditions: (i) it is partially matched by the query trajemst f:)ar;]be;/;/roar; ?;]zngqoanegr:g z?ecrlogzill-eBr:sV\:Sleuzes ?hgndre%riifi)gn
T7; (i) it terminates at a location im;. The count is then P pply bay P

divided by the number of trajectories that terminate at E%O;;rcle.gi.(,:tliilggpr(cz)g);giIicts/rgf‘)ubtgirgzeapgg;t& rgtti):r?mlgyer?(r:g (tﬁ
location inn; to serve as the posterior probability. Formally,focuS of this section is computing the posterior probabilit

P(T|d € ny) = {Zaen; | T% C Tacn, }| (3 using SubSyn algorithm. We will first present the details of
’ |Taen, | ’ constructing Markov model to obtain transition probalast

where [{Tyen,|T? C Ticn,}| denotes the number of trajec_between adjacent nodes in the.grid graph. Next, we wi[l
tories that satisfy both aforementioned conditions gfig,,| ProPOse an approach to synthesise the sub-trajectoriag usi
denotes the number of trajectories that terminate at aitocatth€S€ transition probabilities. Finally, we will formutathe
in n;. We refer to the above method as the ZMDB methdePsterior probability equatio®’(17|d & n;).
after '_[he a_uthors’ names of [31], which formulates the ideg Constructing the Markov Model
described in the second paragraph of Section I. As dlscusseq_ . . S . .
there, this method may suffer from the data sparsity problem o fully leverage the information of historical trajectesi

i.e., the fact that the query trajectory cannot partiallftchany a l\élarkpy n:r? del _'3 cons‘r[]ru_tlz_ted g.y astsgc;atmgt_a Stat(:f t? ?ach
trajectory in D. This makes{Tyc,, |T? C Ticy, }| zero and noden; in the grid graph. Two directed transitions of states

all nodes to have zero probability of being the destinati@n, corresponding to adjacent nodesandn; are established, i.e.,

P(d € n;|TP) = 0. Consequently, no predicted destinatioé” to njlandt.nj to ni'tThe ltranflltlon_ propat:jlllty ?fér%velllng
can be returned. rom a location inn; to a location inn; is denoted byp;;.

Fig. 2b shows an example of the Markov model associated
C. Privacy Protection in Trajectory Publication with the example in Fig. 2a. These transition probabiliges

On protecting the users from privacy leak caused by trﬁondi!:ionallprObabilitieS and can be Computed a.S. the number
jectories based spatial and temporal queries, there anglynaPf trajectories that contain the sequenfee, n;} divided by
four approaches. First, bglusteringthe trajectories within the number of trajectories that contain the nedeFormally,
the same time period using the distance between locations as pij = P(njni) = [Tigl, (4)
an indicator, trajectories can be aggregated in groups and a |T:]
representative trajectory can be computed for the grogenes For each pair of adjacent nodes in the grid graph, we
tially hiding the original trajectories [2]. Second, in diilch compute the transition probabilities offline using (4). Sae
to grouping trajectories, thg@eneralization-basedipproach probabilities are stored as entries of a two-dimensighal g°
will further pick atomic points from the group and generatematrix where one dimension corresponds to the node of curren
trajectories needed by the spatial-temporal queries basedstate and the other dimension corresponds to the next biate.
these points [19]. Third, by iterativelsuppressingdeleting) the following sections, we denote the matrix and its entoies
locations in trajectories, the results of spatial-tempqueeries the transition matrix)/ and M;;, respectively. Matrix (5) is
can also be tuned to exclude privacy concerns [25]. Fourthg transition matrix of the example presented in Fig. 2.
grouping neighbouring cells in grid into groups also me- As indicated by (4), since a first order Markov model is
liorates the anonymisation of the original trajectories Qur used here, only the current state determines the prohabilit




of transiting to the next state. Higher order Markov modelhie number of paths from one node to another is infinitelydarg
could be applied by involving previous states in additioth® without restrictions, i.e.r € [L16,00). By examining the
current state in computing the probabilities. Howeverhkig dataset used in our experiment, it is found that the disgance
order models raise serious concerns when there is insufficief most trips do not exceed.2 of the ¢; distance between
number of trajectories that support the computation of @ighthe starting and finishing nodes. In other words, the detour
order transition probabilities [6] [4]. Following the pttéze of distancel,. is, in most cases, less than 0.2 of hedistance
previous work, we also use the first order Markov model. of a trip. We setLg. ;1 to be[0.2L,_,;] as a typical value

0 p2 0 pgu 0 0 0 O 0 of detour distance. Therefore we define ti¢al transition
par 0 paz 0 pos O 0O 0 O probability as follows.
0 ps2 0 0 0 psg O O O Definition 1: Total Transition Probability The total tran-
psr 0 0 0 pgi5 0 pgr O O sition probability of travelling from one node; to another
M = 0 ps2 0 psa O pse O psg O (5) nodeny, denoted by;_,;. 1, is the sum of the-step transition
0 0 pes 0 pes 0 O O peo probabilities of all possible paths (with the detour dis&n
0 0 0 pgy 0O O O pg O restriction) betweem; andn;. Formally:
0 0 0 0 pss 0 psr O pso Lick+Lde imk
0 0 0 0 O pws O pog O Pisk = Z ik (6)
r=L;

B. Sub-Trajectory Synthesis
. . . = MEiok 4 pplioett Lo Mlimktldeimg
In the previous subsection (Section Il1I-A), a Markov model ik ik ik )
based transition matrix)/ is constructed and filled with N the equation above, the last term after expanding the

: : Lisk+Ldeisk i g
probabilities of travelling from a node to its adjacent nodgummation equation\/;, » gives the probability of
This process, when inspected from another approach, is &RVelling fromn; to ny. in exactly Li— i+ Lae,i— Steps. This
fectively the process of decomposing each trajectoryDin term is our longest distance restrlctlt_)n obtained by exaigln
into a set of sub-trajectories with length 2 (i.e, orderedspa CUr experiment dataset. In (5) and Figp2,.c = M+ My,
of neighbours). For instance, the trajectdfy in Fig. 1 is SiN¢€Lise = 3 and Lqe1¢ = 1. The usage of (6) will
decomposed intd”,, T?., T, and T%, which in turn be revea}led in the follpwmg sub;gctlon (S_ectlon 1-C) whe
contribute to the transition prbbabilitiqsig, pos, Psg, and formulating the posterior probability equation.
peo, respectively. To synthesise sub-trajectories is tosatili While (6) is in its simplest form, it is not computationally
the transition matrix\/ to compute the probability of being afriendly. For a30 x 30 grid graph?, M becomes &0* x 30> =
destination of a query trajectory. The actual methods of su$f0 x 900 matrix. For a typical travel distance of 10 nodes,
trajectory synthesis are presented in this subsectioratitms Pi—k = M + M+ M2 (12 = [10 x 1.2]) which means
derived in this subsection will be incorporated in SectibrQ  that matrix multiplication operation needs to be perforroed
to formulate the posterior probabilitf(T?|d € n;). the huge matrix)/ more than 30 times where each matrix

Synthesis of Detouring Path towards Destination:A multiplication requiresD(n*373%) (n = 900) time complexity
useful value that can be generated framis the sum of the [27]. While already inefficient, the same operation needseto
probabilities of all possible paths between two nodesind carried out for all pairs of nodegn;, ny.} (900 ~ 8.1 x 10°
. The fo”owing examp|e will demonstrate the Concept dfairS). It is therefore infeasible in terms of running tinde.
this probability. By referring to (5) and Fig. 2, the problitgi tailored and efficient algorithm is introduced to solve there-
of travelling fromn; to ng is found to be zero iV (i.e., mentioned issues that are presented to us. We use pseudo-cod
M;s = 0) becauseM stores the probability of travelling in Algorithm 1 to summarise the procedures (nangetbSyn-
from one node to another in exactly one step, and there is R@ining) described below. As the name suggests, this stage
way of travelling between these two nodes within one stei§. done as a pre-computation training stage which allows the
Furthermore, when\/ is multiplied by itself to formaz2, actual online query stage to be processed instantanedingy.
its entries are the probabilities of travelling from one aodruntime efficiency measurements are presented in Section V.
to another in two steps. In generdl{” (r € [0,00)) holds Firstly, Equation (6) is reformed so that few redundant
the probabilities of transition from one node to another iROMPUtations are carried out.

exactlyr steps (i.e.M" holdsr-step transition probabilities). Lik+Ldeimk
Since the/; distance betweem; andng (i.e., Li_¢) is 3, Pisk = Z ik

the probability of travelling fromm; to ng via all the shortest r=Limk

paths can be found in matrix entd/3;. Intuitively, we wish Lok Lac ik .

to use this property to replace terms in both the numerator = M Z My (7)

and denominator in (3). Two problems also remain: (i) the o

¢, distance does not necessarily correspond to the actual
travellmg distance from:; .tO 6 because sometimes .a Smal.l 1Note the difference betweep;_,; and p;;. The latter is the transition
detour is taken due to ygrlous reas_(_)r_]S- Hence. we wish to _f%'}gbability between twadjacent nodes, and its definition was given in (4).
the sum ofr-step transition probabilities of various steps; (ii) 230 x 30 grid graph gives the best accuracy in our experimental study

= Mi;ak . (M?k + M~111C Tt Mf];de,iﬂk) .



For the purpose of explanation, we us&(ax 30 grid graph nodes in the grid graph, sort these pairs in ascending offder o
as an example without any loss of generality. Since the Isingéheir distance between each other, and computg, in this
distancemax (L; ) = L1900 iS 2 x (30 — 1) = 58, the order (Algorithm 1: lines 9-17). Using Fig. 2 as an example,
maximum possible value df,. ;—x = [0.2L;] is therefore the all pairs of nodes and their distances are generated to be
[0.2x 58] = [11.6] = 12. By taking advantage of the concepf{ni,n2}(1), {n1,na}(1), - -, {n1,n3}(2), - - -, {n2,ns}(2),
of dynamic programming, an array of size 13 can be usedto, {ni,ns}(3), ---,{n1,n9}(4), {n9,n1}(4). In order to
store all M", € [0,12] which are computed in ascendingcompute the total transition probability of each paif! and
exponent order (Algorithm 1: lines 5-6) such that only 1,’[:71.:0 M, are retrieved from memory, and they are multiplied
matrix multiplications are required since we already haye together to form a matrix containing,_,, of distance 1
and M° is the identity matrixI. Afterwards, we sequentially (Algorithm 1: lines 18-19). The total transition probatids
add each array element to the next element to f5ifn, M  of all pairs of distance 1 can be obtained directly from this
(second factor in (7)) whergis an array index (Algorithm 1: matrix (Mpewer in Algorithm 1). After all pairs of distance 1
lines 7-8). The benefit is evident because all possible galuare obtained)/? is computed by multiplying/, and a matrix
of Zfig“k M}, can be directly retrieved from this array forcontainingp;_,, of distance 2 is obtained (Algorithm 1: lines

further computations.

Algorithm 1: SubSyn-TrainingD, g)

1 MT «—o0;

2 n+ [02x2(g—1)];

3 Aln+ 1]« I;

4 A[l] « M « D;

5 for i <— 2 ton do

6 | Al <« M-Ali—1];
7 for i < 1 to n do

8 | Ali] « Al + Ali —1];

/I total transition matrix
/I maximum detour distance
I/ define an array to storg_,_, M"

/I construct transition matrix

II' Ali] now holds M*

/' Ald) now holds>%_, M™

9 list « 0; /I a list to store all node pairs
10 foreach n; in grid graphdo

11 if M;, contains only zero entriethen

12 | continue;

13 foreach n; in grid graph do

14 if M, ; contains only zero entriethen

15 | continue;

16 add node pai(n;, n;) to list;

17 sortlist; /I according to increasing order éf distance

18 Mpower < M,
19 JMg;mp < Mpower - A[1];
20 Lprev <1

21 foreach (nj,nj) € list do

22 while Li_,j >= Lprev +1 do
23 J\/jpower <~ M- Mpowe'r ;
24 ]‘/jtj;mp — Mpowe'r . A[Lde,i%j};
25 Lprev""";
T T i
26 My < Miermp,ij 8. pivj

27 return M and M 7T;

/I matrix to store intermediate result
/I matrix to store intermediate result
Il record distance of previous iteration

22-25). Utilising this algorithm, only less than 100 matrix
multiplications are carried out (in the case o8@&x 30 grid
graph) to compute all total transition probabilities, wéees the
intuitive approach requires millions of matrix multipligans.
During the process, each foung.,, is stored in a separate
matrix M7 (Algorithm 1: line 26) which we call theotal
transition matrixand it holds the same number of entries as
the transition matrixi/.

In the process of enumerating all pairs of nodes, more com-
putational steps could be eliminated by pruning unprorgisin
pairs of nodes. For two nodes andny, if either the entire row
containingn;, M., or the entire column containingy, M,
comprises only zero entries, the pair is discarded (Algonrit.:
lines 11-12, 14-15). It indicates a lack of training datahiage
nodes and the probability is always confined to zero in such
case. Hence there is no need to compute their total transitio
probabilities.

The memory space occupied by SubSyn-Training is trivial
as explained below. By referring to Algorithm 1, the memory
space needed i§0.2 x 2(g — 1)] + 5) - g* x 8Bytes. (i.e.,
Aln+1], M, Myower, MT, ML, andlist). In @30 x 30 grid
graph, the space needed is 105MB, making the algorithm im-
plementation feasible in most modern computers. The rgnnin
time of the algorithm is examined in the experiment section

(Section V), and is found to be totally acceptable.

Synthesis of Path for Query Trajectory We provide a def-
inition of path probabilitywhich will be used to compute the
posterior probability. The path probability is the probdapiof

Regarding the first factod/i~* in (7), we could use the @ Person travelling from one location to another via a specifi
7 7

same strategy except that in order to store this term for &fth- Typically the path is the query trajectory providedeby
pairs of nodes, too much memory is required, especially i#3€r- The value of the path probability can be obtained girou
a fine grid. Specifically, in @0 x 30 grid graph, each\/ mult|pl)-/|ng.the transition probabilities bereen all psalpf
requires30 x 302 x 8Bytes~ 6.1MB of storage space. SincenOde_S in this partial patEi’P: For exam.ple, given the transition
the maximum¢; distance in such a grid graph is 58, thdnatrix M/, the pqth p_robal_mllty of movmgfromalocatmnm
total amount of memory required will exce€d0MB (i.e., !0 another location img via the pathl?, ; ; can be obtained
58 x 6.1MB). When using a finer grid graph, the amount oftS fOHOWS:P(Tﬁ;}_,a) = P14 - Pa5 - P56 wherepy4, pss, and
memory required increases rapidly. For instance, a@bgrid P56 are the transition probab|I|t|e.s in the matridd between
graph will require4.6GB of memory to store all/”, and an Consecutive and adjacémtode pairs{ni,n4}, {ns,ns}, and
80x 80 grid graph will requiret8GB. Therefore we need to {725, 76}, respectively. In general, given any partial trajectory
seek a scalable and robust solution. Fortunately, theseoemt Sconsecutivenodes are two nodes next to each other in a trajecamjgcent
do not have to be stored. Instead, we enumerate all pairsnodies are two nodes next to each other in a grid graph.



17, .. . the definition of path probability is: IV. PRIVACY PROTECTIONAGAINST PREDICTION BASED
B k

» ON SUBSYN ALGORITHM
P(17) = P(T1,27...7k) = Hpi(iJrl)a (8)
As explained in Section I, LBS benefits both users and

. /L:]‘ .

When th_e sequence of nodes in aquery trajgptory does Bﬁtsiness providers. For instance, when a user uses her smart
fall into adjacent nodes, the transition probablll_ty wonhi_d hone to “check in” at various places and share with her
zero. In such cases we use a linear |ntgrpolat|on to fill t fiends on social websites, she benefits from receiving spe-
gaps between two non-adjacent consecutive nodes.

cial offers and discounts (e.g., voucher at a coffee shop),
discovering new places (e.g., a restaurant recommended by a
friend), and sharing cheerful moments (e.g., publishedtion

After defining the total transition probability in (6) andat the venue of an Olympic Games opening ceremony). As a
the path probability in (8), given a query trajectdf{?, we business provider, the owner is able to create brand Iqyalty
calculate the posterior probability of a user travellingnir have a social medium to engage with customers, and receive
the staring node, to the current node, via 7% conditioned advertisement. Despite the aforementioned benefits th& LB

C. Computing the Posterior Probability

on the destination being in nodg by (9): brings, it also incurs possible locatioriivacy leak Privacy
P(TP) - pes,; is of high concern to a lot of people, and in many occasions
P(T?|d € n;) = ———1, (9) privacy leak can cause serious safety threats. It is therefo
Ps—i vital that we develop a solution to counteract the potential

whereP(T") is the path probability of the given partial trajec-Privacy leak threat from abuse of SubSyn by malicious psrtie
tory T?; p._,; is the total transition probability of people going!n order to achieve this goal, we propose a privacy protactio
from the current node of?, n,, to a predicted destination solutloniln thls section to mr_alke the de.stlnatlon probapb(lirr

d € n;; andp,_,; is the total transition probability of travelling the destination rank) of a private location lower than a ehos

from the starting node of?, n,, to a predicted destinationthresholdk through deleting the smallest number of nodes
d e nj. from the query trajectory (constructed from a list of user's

The posterior probability is used when a user issues!Qfations).
query to compute destination probabilities. We summatise t Consider the following scenario in which a user takes
SubSyn-Predictiomlgorithm and present the pseudo-code iddvantage of our privacy protection solution to avoid pryva
Algorithm 2. Given a transition matrix/, a total transition €ak. Jane has a geo-social application on her smart phone,
probability matrix M7 generated from taxi trajectories in a@nd during a Sunday afternoon she is on her way home from a
gnd graph, and a partia| query [rajectoTy), the overview pUb'IC event. nght before arriving at her house, four |
of the SubSyn-Predictioalgorithm is as follows: (i) We first (€-9.,{l1, l4, l5, ls} in Fig. 2) are recorded from auto check-
calculate the path probability of the partial travellingjectory ins when uploading a photo taken by her smart phone and
TP using (8); (i) Then, for each node;, we calculate when posting a message, and manual check-ins at the event
venue and in a restaurant. If our privacy protection sofutio

Algorithm 2: SubSyn-Predictioq\Z, M, T?) is in place, before publishing each location, Jane receives
1 list < 0: /l a list to store the output  CONfirmation dialogue showing a list of predicted destinradi

2 construct path probability>(7°?) from M; (in decreasing order of destination probability) shoul@ th
s foreach n; in grid graph do locations be published. After taking a photo (auto chedk-in
4 retrieve pe,; andp,,; from M7 at lg and using the list of locations as the query trajectory
5 computeP(T?|d € nj), and henceP(d € n;|T?) ; P . . . . .

. store P(d € nj|T?) in list ; 17 4 5.6, the confirmation dialogue reports a list of predicted
, sortlist: nodes{v_zg, ns, ng_} (_cf. Fig.2_) amongst which her actual
8 return topk elements inlist residential place lies in the grid nods. Due to the concern

of privacy leak of her residential place, she selects a rank
the posterior probabilityP?(7%|d € n;) of moving viaT? threshold 3 which indicates that, after applying our solui
given n; being the destination; (i) For each nodg, we Jane would like the probability ofiy fall below the third
compute the destination probability(d € n;|T?) based on predicated destination. Our solution processes this gyiva
P(d € n;) and P(T?|d € n;); (iv) Finally, we sort the protection request and returns a new list of locati¢hs I5}
nodes according to their destination probabilities andrret with predicted destination§ng, ne, ng} which are the results
the top4 elements in the sorted list (i.e., a list of predictedf deleting the smallest number of locations (in this case
destinations in descending order of their destination @bidb andls have been deleted) such thatis not amongst the top-
ities). It is clearly observed that the algorithm is extréme predicted destinations. Jane is satisfied with the regulist
straightforward because of the offline training st&&bSyn- of locations, and publishes them without worrying the issue
Training presented in Section I11-B. IBubSyn-Predictigrfew of privacy leak. One could argue that the first locatiprwas
computations are carried out since most of the probatsilitideleted after being published in the first place. This gdiyera
required can be directly fetched from pre-computed matricdoes not pose a serious concern to a user because this tocatio
M and M7, is deleted within a few hours, and hence it is only a threat



provided that a malicious party is constantly monitoring hd3. End-Points Generation Method

af:tlvmes on S(.)C'al websites. Furthermore, if a user eqpia . We start by presenting the theoretical findings underneath
higher protection level, she should be able to select arwopti

) . ) . he End-Points Generation Methoahich extensively reduces
to save the list of check-in locations along a trip, and on

: - o= e number of sub-trajectories that we need to examine ghenc
publishes them after arriving at her destination. Basedhen t_. ~ ... . : : ;

: S ) . ... significantly reduces the running time of processing online
solution presented in this scenario, we give a formal dédimit

! : : : gueries.
of the-p.rllvacy .profcect|0nproblem.|n our paper. - Theorem 1:Using a first order Markov model based Sub-
Definition 2: Privacy Protection Against Prediction . . . : .
based on SubSyn AlgorithmThis task identifies a set of Syn algorithm and given a partial trajectory, the probapili

locations in the query trajectory to be removed from publiczgf any potential destination depends only on the startingeno

tion such that the destination of the query trajectory wél bn“".and the current (i.e., most recent) node of this partial
) . . . trajectory.
predicted with a probability lower than a given threshold an . . . .
Proof: Given a partial trajectoryf’””, we combine the des-

the number of locations not published is minimised. - o . ) i
The remainder of this section presents our proposed sojfpation probability equation (1) and the posterior prailiyb
uation (9) to obtain the following equation:

tion. In order to respond to a large number of online querigg

submitted by users, the solution should be able to procesgth P(T?) - ;j—ﬂ - P(d € nj)
. . . .. P(de n~|Tp) — 53
queries in a highly efficient way. We propose two methods to J k ,
achieve this goal. Firstly we present BRhaustive Generation 1<;§ , [P(T”) gk P(d e nk)}
Method (Section IV-A) which is intuitive, but suffers from - —‘; _
low efficiency issue. We then present another method named B ﬁ - P(d € ny) (10)
End-Points Generation Methoection IV-B) which is more Tk ‘
oot > [E=k-Pden)
efficient. (g Pk
A. Exhaustive Generation Method Equation 10 shows that, besides, the values ofp._,; and

We first present the intuitivExhaustive Generation Method p._.x only depend on the current node while the values of
An example is used here to explain this method: Givena_,; andp,_.; only depend on the starting nodg. Therefore
partial trajectory consisting of = 4 nodesTﬁ475,6, we first the value ofP(d € n;|T?) only depends on the starting node
iteratively delete one node from this given partial tragegt and the current node of the given partial trajectory. [
Four resulting sub-trajectories, each consisting of ti@#es,  The above theorem indicates that, given a first order Markov
will form (i.e., 77,5, T4 Tis6 and 775 4). We find model and a partial trajectory, the destination probabditd
the destination probability (and the destination rank) lté t the destination rank of the user’s private destination can b
given private destination in each formed sub-trajectoringis altered only by deleting the twend points(i.e., n, andn,)
SubSyn-Prediction (linear interpolation is used to hamdie- from this partial trajectory. Hence we call this method the
adjacent nodes). If any result satisfies the privacy thidsk@ End-Points Generation Method. This way we decrease the
return the corresponding sub-trajectory to the user. @dser computational cost significantly.
we continue generating a total of six new sub-trajectorfes o

length 2 (i.e., T1,, T75, T, Tis Tie and Ty ). This V. EXPERIMENTAL STUDY
process is repeated until either we find a suitable subetaje . ) ) )
which satisfies the privacy protection criterion (i.e.,dvela !N this section, we conduct an extensive experimental study

rank threshold), or when there is no valid node to be deletd. evaluate the performance of our SubSyn algorithm. The
However, we note that the Exhaustive Generation Meth&@ly available algorithm that can perform generic destomat

is so inefficient that it is impossible to adopt to answer aprediction is the ZMDB algorithm described in Section II,

online query which is expected to run in a fraction of &nd we need to adapt it in the following way in order to

second. The reason is as follows. The original partial ¢tajy Make the comparison. The original ZMDB algorithm can only

needs to be decomposed into a list of sub-trajectories @jye suggestions (i.e., predicted destinations) provitied a

to a certain extent (e.g., restrictions can be imposed sud#ery trajectory has a partial match in the training dataset

as setting the maximum number of deleted nodes to be @nsequently it can not be compared with our algorithm when

and the number of sub-trajectoriesY§.__, C7). Based on Non-matching query trajectorieare present. An adapted ver-

the theories of mathematical combination, the complexity 80N of ZMDB algorithm has been implemented such that the

this process is factorial. It is precisely the reason that tigurrent noden. in the query trajectory is used as a predicted

Exhaustive Generation Method is inefficient. Its runningei destination in the case where insufficient predicted dastins

is measured and presented in the experiment (Section ¥§€ generated by ZMDB algorithm. Same implementation is

Hence a revised method (presented below in Section v-B)4@ne for SubSyn. In this section, we call this adapted ZMDB

introduced which does not suffer from this issue and is effiti a/gorithm thebaseline algorithm

in terms of running time and throughput as the experimerit wil “4non-matching query trajectories are those query trajestovhich have

show. no partial match in the training dataset.



The effectiveness subsection (Section V-B) will focus am thand non-matching query trajectories and vary Metch Ratio
prediction accuracy while the efficiency subsection (®ecti- (denoted byr) which is the proportion of matching query
C) measures and presents the running time of both tralnmrg]ectorles in the test dataset (0-1 with 0.25 increment).
and prediction stages. The runtime efficiency of the locetio ; REen
privacy protection methods proposed are also tested and c¢, ‘
pared with each other. The settings of our experimentalystu| /
are presented in Section V-A. '

B

A. Dataset

We use a real-world large scale taxi trajectory dataset frg:
the T-drive project [29], [30] in our experiments. It contains
a total of 580,000 taxi trajectories in the city of Beijing,
5 million kilometres of distance travelled, and 20 million /
GPS data points. The GPS points are plotted in Fig. 3. We
randomly pick 1,000 trajectories from this dataset to be tiy. 3. Training dataset: 20 million Fig. 4. Map of Beijing with a30 x
query trajectories and the remaining trajectories are @sedtaxi GPS points in Beijing 30 grid graph overlay
training data. In the following experimental result figures, a conventisn i
set thatdashed lineaand hollow shapesre used to represent
the baseline algorithm, ansblid linesand filled shapesare

Evaluation Measures:To evaluate the performance of oufor our SubSyn algorithm.
system on various user queries, we use the following twoVarying the grid size: First of all, a suitable grid size
means of measuremer@@overageand Prediction Error. The needs to be decided for our training dataset. On one hand,
former counts the number of query trajectories for which at coarse grid (e.g20 x 20) may have a very low prediction
leastk suggested destinations are provided. The parametesccuracy because the area covered by each grid node is too
is determined by the number of predicted destinations tieat Yarge. On the other hand, it has the benefit that the number
set. For instance, when we examine top 3 predicted destigf-matching query trajectories is much higher since more
tions, k is set to 3. In other words, due to the problem of dat@ajectories in the training dataset may fall into ideritica
sparsity presented, it is highly likely that insufficienegicted nodes, hence increasing prediction accuracy. A fine gril,(e.
destinations will be suggested for certain non-matchingryu 50 x 50) has the advantage of higher prediction accuracy that
trajectories. Hence we utilise this property to demonetrahe small node area brings, but training data become even
the difference in robustness between the baseline algoriteparser because less locations will lie in a same node, gakin
and SubSyn. The prediction error for a single predictagle task of destination prediction more difficult. Fine gaido
destination of a query trajectory is the distance between has a drawback that it requires (much) more time to complete
this predicted destination and the true destination of thery] the offline training stage. Therefore, we need to find a baidnc
trajectory. The aggregateBrediction Error is the average and compromised grid size that is neither too small nor too
of all distance deviations across each predicted destimati |arge, and can achieve the best prediction accuracy.
of all query trajectories. It is used to indicate how far the Baseline (trip=30%) - g Baseline (trip=70%)
prediction results deviate from the true destinationshéuwsd SubSyn (trip=30%) —t— —¥— SubSyn (trip=70%)

=
i

B. Evaluation of Effectiveness

)

e
;_‘

be made clear that the prediction error does not indicate the, 1 EuF

best prediction accuracy that an algorithm can achieve. F(ﬁ 8o | e g 4 i’ig C

instance, a prediction error &fkm for the top3 predicted 260y pal UE s b

destinations is the averaged distance deviation of all e§e¢h i’g oF e 1 €°5[

3 predicted destinations, and it is likely that the true idesion ~ § 2 L v ] Baf, . . .

is amongst these 3 predicted destinations. Better algotitas é 0 20 30 40 0 0 20 30 40 50

a higher coverage and a lower prediction error (i.e., lower Grid Size (g) Grid Size (g)

average distance deviation). (a) Coverage (b) Prediction Error
The two aforementioned means of measurement will be Fig. 5. Varying the grid sizg

evaluated against varying four parameters one at a timstiyfrir  Fig. 5 shows the trends in both coverage and prediction
we will vary the Grid Sizeg (20-50 with 10 units increment) error with respect to grid size. The coverage of the baseline
to select a best grid size for our training dataset. This ehosalgorithm drops rapidly due to the data sparsity problem
grid size will be used for the remainder of the experimentaused by smaller nodes in a fine grid, but the drop in coverage
The second and third parameters are #frgp Completed of SubSyn-Prediction is extremely small. The optimal giieks
Percentage(10%-90% with 20% increment) and thEop+ for our training dataset is selected to be 30 according to the
predicted destinations (1-5 with 1 unit increment). Fipall global minimum point in Fig. 5b. In a typical setting where
instead of randomly selecting query trajectories from thg= 30 and trip completed percentager&%, the coverage of
training dataset, we manually mix the proportion of matghinSubSyn-Prediction algorithm is roughly 3 times the coverag



of the baseline algorithm while having a more than 1 km Varying the number of predicted destinations: We also
reduction in prediction error. Although the optimal valuk ocinvestigate the effect of the number of predicted destomasti

g is dependent on different training dataset, it does not need the performance of both algorithms by examining thekop-
to be modified often because the update in training datasetfiem 1 to 5) predicted destinations. The experimental results
rare (e.g., one update every few months), and for a satisfactare shown in Fig.7.

prediction accuracy, it is not essential to modifyfor each Baseline (trip=30%) O v Baseline (trip=70%)
training dataset update. All following experiments are elon _. SubSyn (rip=30%) —H— v SubSyn (ip=70%)
using the grid sizgy = 30 (cf. Fig. 4). %loo - 5 %] EwfT T T T
Varying the percentage of trip completed: Fig. 6 shows ﬁ 80 |- i B e
the effectiveness performance versus the percentage pof trg 60 I- o, 1 Wer oo ]
completed for both tog- values1 and 3. For the baseline g “°f Viwego o1 84y —7 ]
algorithm, the amount of query trajectories for whichsudint ~ § [, | B[, . . ]
predicted destinations are provided decreases as thénlehgt S 1 2 3 4 5 1 2 3 4 5
the trip increases due to the fact that longer query trajeto Top-k Topk
(i.e., higher trip completed percentage) are less likeljaoe (a) Coverage (b) Prediction Error
a partial match in the training dataset. Specifically, whém t Fig. 7. Varying the value ok

completed percentage increases towards 90%, the covefrage ¢ this figure, the comparative performances of both algo-
the baseline algorithm decreases to almost 0%. Our SubSyithms are similar to that of the experiment of varying the
Prediction algorithm successfully coped with it as expectgercentage of trip completed. Specifically, observatioh&lw
with only an unnoticeable drop in coverage, and can corlgtangan be made from the figure are as follows. The SubSyn-
answer almost 100% of query trajectories. It proves that tiediction algorithm shows a more stable coverage and a
baseline algorithm cannot handle (relatively) long trigeies more accurate prediction accuracy than the baseline #igori
since the chances of finding a matching trajectory decreds® the baseline algorithm, the number of query trajectorie
when the length of a query trajectory grows. The coveragéhich have sufficient suggestions (i.e., the coverage) sirop
performance of the baseline algorithm when fop-3 is even due to the data sparsity problem since, for certain query
worse then that of top- = 1 because the metricoverage trajectories, it cannot find adequate (i.e., no less than
counts the number of query trajectories that gikgsredicted predicted destinations. The same problem does not affect
destinations. Therefore the number of query trajectorggs fSubSyn-Prediction and it remains an almost 100% suggestion
which SubSyn-Prediction give3 suggestions is clearly lessoffer rate. In a typical setting whek = 3, the coverage
than those which can provide onlysuggested destination. 0f SubSyn-Prediction is almost 3 times the coverage of the

Baseline (top-k=1) -3 -7~ Baseline (top-k=3) baseline algorithm'
= SubSyn  (top-k=1) —M— —¥— SubSyn (top-k=3) Varying top+ has little correlation with the prediction error
Eloo - Q ] EuF because of the definition of this metric. We compute the
§ ol o 1 B2r prediction error (i.e., average distance deviation) by ayiag
£ 60 |- E 1 Ssp amongst all predicted destinations. Therefore the vanait
E 40 | v.ogl 8 ﬁ i k has little effect on the prediction error. This figure, hoeev
gor 9] B2t does verify the fact that SubSyn-Prediction produces aeeoti
3 0 0% 30% 50% 70% 90% . - 10% 30% S50% 70% 90% ably better prediction accuracy than the baseline algorith
Trip completed (%) Trip completed (%) Varying the ratio of matching and non-matching query
(a) Coverage (b) Prediction Error trajectories: The query trajectories used in the above exper-
Fig. 6. Varying the percentage of trip completed iments are drawn randomly from the training dataset. They

Apart from the huge advantage of SubSyn-Prediction neflect the real distribution of matching and non-matching
coverage, its prediction error is comparable with that & thquery trajectories in both the test dataset and the training
baseline algorithm. For the baseline algorithm, despite tdataset. It is found that the real match ratio (denotedrpy
negative influence of the coverage problem, its predictiatecreases while the grid sizeincreases because finer grid
error reduces as the trip completed percentage increasesyfelds sparser data. For & x 30 grid graph, the averaged
a simple reason. When the baseline algorithm fails to fimdal match ratio is found to be approximately 0.27 (indidate
adequate predicted destinations, we use the current ndbe inby the vertical dashed line in Fig. 8). It indicates that, in
query trajectory as the predicted destination. Becauskehigaverage, only 27% of query trajectories will be able to find a
trip completed percentage yields a closer distance betwgmartial match in the training dataset. A low match ratio henc
the current node and the true destination, the predictioor eris fatal to the original ZMDB (and the baseline) algorithm,
reduces accordingly. For SubSyn-Prediction, closer tdrie but has little negative impact on SubSyn-Prediction. Irs thi
destination means that there are fewer potential destimati experiment, we elaborate further on the concept of match
and intuitively the prediction error reduces. It is observeratio by manually selecting a mixture of matching and non-
that SubSyn-Prediction outperforms the baseline algorithmatching query trajectories, and comparing the influence of
throughout the progress of a trip. different match ratios. For simplicity while maintainingn a



TABLE Il

indicative results, a trajectory is said to have a partiaticma
AVERAGE RUNNING TIME OF SUBSYN-TRAINING ALGORITHM

the first 70% nodes have an exact match in the training dataset
This indicates that, whem = 0.27 and the trip completed Grid Size | 20 30 40 50
percent is higher than 70%, the coverage is at @5t for  Rrunning Time (h:mm:ss) | 0:02:35 0:32:35 3:08:53 17:13:55
the baseline algorithm.
Baseline (trip=30%) -3 -7 Baseline (trip=70%) directly related to the number of to-be-published locatidi

= SubSyn (trip=30%) —— Y SubSyn (inp=70%) is worth mentioning that this part of the experiment was run

S0k % ® & @] Ewfg T T ] onacommodity computer with Intel i7-860 CPU (2.8GHz)

Sl H A 5 H\i\Li and 4GB RAM.

; 60 - S e N g . Runtime efficiency of SubSyn-Training algorithm: In

g 40 —— 1 84T —~— 537 Algorithm 1, we introduced the SubSyn-Training algorithm

g 22 I b - z [, «-ea027 7 which synthesises sub-trajectories in the training datase

8 0 025 05 075 1 0 025 05 075 1 generates matrice® and M7 to be used in the online query

Match Ratio () Match Ratio (1) stage. Especially, several enhancements were implemémted
(a) Coverage (b) Prediction Error increase the runtime efficiency of the time-consuming large
Fig. 8. Varying the match ratie matrix multiplications. Our experiments have proven thwet t

As shown in Fig. 8, by varying the match ratipthe perfor- running time of SubSyn-Training is totally acceptable.|&db
mance of the baseline algorithm deteriorates rapidly whensummarises the time taken in the training stage with regpect
is tuned towards O while little impact is observed for SubSywarious grid sizes. In 80 x 30 grid graph, the average running
Prediction. The baseline algorithm functions well proddeat time of SubSyn-Training is approximately 30 minutes which
abundant data are given (i.e:,— 1), but the performance is negligible, especially when the training stage is onlg ru
starts to decrease to an unacceptable status when thereoaoasionally (e.g., once in a few months). Even when the grid
insufficient training data. Particularly, when the matctioégs size reaches0, the training stage can still be completed within
low (i.e., 7 — 0) and the trip completed percentage is high8 hours on a commodity computer with ordinary hardware
(e.g., 70%), the baseline algorithm has a coverage towammfiguration.

0%. From Fig. 8a, our SubSyn-Prediction algorithm provides Runtime efficiency of SubSyn-Prediction algorithm:We
adequate (i.e., at least 3 since the default value ofitap- compare the runtime performance of our SubSyn-Prediction
3) predicted destinations for almost every query trajgctoralgorithm with the baseline algorithm in terms of online
It proves that our algorithm can overcome the data sparsguery response time. Due to the information stored during
problem while maintaining a stable performance, whereas tthe offline training stage, SubSyn-Prediction requireselit
baseline algorithm is unable to achieve this objective. extra computation when answering a user’'s query. As Fig. 9

In Fig. 8b, it is observed that the prediction errors of botshows, the baseline algorithm requires too much time to run,
algorithms become smaller when more relevant training datdnereas SubSyn-Prediction algorithm is at least two orders
are available (i.e.y — 1). Once again, it proves that theof magnitude better constantly. The reason is that the inasel
prediction accuracy of SubSyn-Prediction leads the hbaselialgorithm is forced to make a full sequential scan of therenti
algorithm. training dataset in order to compute the posterior prokgpil
whereas SubSyn-Prediction can fetch most probabilityeslu
directly from the stored matriced/ and M7. It is worth

Apart from the prediction accuracy, runtime efficiency is asientioning that varying either parameter (i.e., trip coatgd
important since the algorithms need to be evoked to ansvwmrcentage or match ratio) has little influence on the rumpnin
real-time queries. For each user supplied query, it mugirteptime of the two algorithms. These parameters mainly affest t
a list of predicted destinations instantaneously. Othesvihe effectiveness of the prediction process rather than thémen
whole purpose of the solution becomes meaningless. Thificiency.
section verifies the swiftness of SubSyn-Prediction which Runtime efficiency of privacy protection methods: We
outperforms the baseline algorithm by at least 2 orders iotroduced two methods for privacy protection in Section 1V
magnitude in most cases. Result (i.e., running time) is pneamely the Exhaustive Generation Method and the End-Points
sented with respect to varying both trip completed perggtaGeneration Method. Experiment was conducted to compare the
and match ratio. The reason for not including the parametentime efficiency of both methods by varying the number of
top-k is that all potential nodes are computed for a destinatiorodes in query trajectories.
probability before selecting the firdt destinations to report. The result presented in Fig. 10 clearly shows the gap in
Therefore the value ok does not affect the computationrunning time even when illustrated in a log-scale plot. The
process at all. The running time of SubSyn-Training is alsimple reason is that the Exhaustive Generation Methoesuff
presented for completeness. In the context of privacy protdrom generating excessive number of sub-trajectoriese-esp
tion, the two methods Exhaustive Generation Method and Erdally when the number of locations, and hence the number
Points Generation Method are compared for running time withH nodes, in a query trajectory is large since more nodes in a
respect to the number of nodes in query trajectories, wtichquery trajectory generates exponentially more sub-trajiss.

C. Evaluation of Efficiency
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While the number of nodes in query trajectories increa$es, t [5] Auto4Sq. (2012) Schedule automatic foursquare check@nline].
rise in running time of the End-Points Generation Method is_ Available: http://www.autodsg.com/

infinitesimall I 1tis d df hi f [6] A. Bhattacharya and S. K. Das, “Lezi-update: An inforioattheoretic
infinitesimally small. It is demonstratead from this perf@nte approach to track mobile users in pcs networks,”Piroc. MobiCom

study that, similar to the runtime efficiency of the two desti 1999, pp. 1-12.

natlon predlctlon algorlthmsl the runnlng tlme Of End_%ln [7] L. Chen, M. Lv, and G. Chen, ‘A system for destination andufe

. . . route prediction based on trajectory miningervasive and Mobile
Generation Method is at least two orders of magnitude faster cqmnuting vol. 6, pp. 657-676, 2010.

than that of the Exhaustive Generation Method. [8] D'Keesto. (2012) Fast or automatic facebook checkin.nlfie].
Available:  https://play.google.com/store/apps/defad=com.dkeesto.
VI. CONCLUSION focheckin

. . p . 9] G. Gidofalvi, X. Huang, and T. B. Pedersen, “Privacygee/ing data
In this paper, we have identified the data sparsity prObIerIn mining on moving object trajectories,” iRroc. of MDM 2007.

in destination prediction and proposed a noSab-Trajectory [10] V. Gogate, R. Dechter, and B. Bidyuk, “Modeling traneation routines
SynthesigSubSyn) algorithm to address this problem. Sult)— using hybrid dynamic mixed networks,” iroc. UAL 2005.

. . . . . . 11] GPSExchange. (2012) GPS track log route exchange fofGmiine].
Syn algorithm decomposes historical trajectories into-su ] Available: ht?p:,,\,(\,wwlg)psexchange.Cogm, ge fofGmine]

trajectories and connect them into “synthesised” trajge$o [12] T. Hashem, L. Kulik, and R. Zhang, “Privacy preservinggp nearest

for destination prediction. This process is formulatedelasn neighbor queries,” IrfEDBT, 2010, pp. 489-500. :
K del. The number of rv traiectori that 4%]3] T. Hashem, L. Kulik, and R. Zhang, “Countering overlagprectangle
a Markov model. € nu er ol query trajectories that ¢ privacy attack for moving knn queries,” imformation System<012.

have predicted destinations is exponentially increasethisy [14] E. Horvitz and J. Krumm, “Some help on the way: opporstinirouting

means. Experiments based on real datasets have shown thatunder uncertainty,” inProceedings of the 2012 ACM Conference on
Subs | ith dict desti . f . Ubiquitous Computingser. UbiComp '12, 2012, pp. 371-380.
ubSyn algorithm can predict destinations for up to ten $|mﬁ5] J. Krumm and E. Horvitz, “Predestination: Inferringstieations from

more query trajectories than the baseline algorithm. SnobSy  partial trajectories,” inProc. UbiComp 2006, pp. 243-260.
algonthm ConS|Stent|y predlcts destlnat|ons for a” thm[y [16] J. Krumm and E. Horvitz, “Predestination: Where do yoanivto go

. . . . . today?” |[EEE Computerpp. 105-107, 2007.
trajectories in all the experiments we have performed, &ndj;; | "\ia0 D. 3. Patterson, D. Fox, and H. Kautz, “ eamis inferring

have successfully addressed the data sparsity probleneAtt  transportation routines Artificial Intelligence 2007.

same time, the SubSyn prediction algorithm runs over tw&?l N. Marmasse and C. Schmandt, “A user-centered locaffwdel,’
d f maanitude faster than the baseline alaorithm Personal and Ubiquitous Computingol. 6, pp. 318-321, 2002.

oraers o g . - g 2 [19] M. E. Nergiz, M. Atzori, and Y. Saygin, “Towards trajecy anonymiza-
We have also taken into account the privacy protection issue tion: a generalization-based approach,Froc. of GIS 2008.

in case an adversary uses SubSyn algorithm to derive sensit#0l Sf- I\\I/gtinong, R. f%h_an?, EI Ta}tnhm, afmd L. Kylg:r,1 “Analysisd t\eleaEI)uE;':ltljon

. . . - [0} -Knn: an eflicient algorithm Tor movingnn querles," \

I(_)cat|on mformqtlon of users. We proposed an ef_ﬂuent algo o119 no. 3, pp. 307-332, 2010.

rithm for selecting the smallest number of locations a uspr] D. J. Patterson, L. Liao, D. Fox, and H. Kautz, “Infegitnigh-level

has to hide on her trajectory in order to avoid privacy leak. behavior from low-level sensors,” iRroc. UbiComp 2003, pp. 73-89.

. . . . 2] M. Research. (2012) T-drive trajectory data samplailifi@]. Available:
Compared with a naive algorithm, our proposed algorithm % http:/iresearch.microsoft.com/apps/pubs/?id=152883

more than two orders of magnitude faster. [23] ShareMyRoute. (2012) Share my route. [Online]. Avaiéla http:
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