
V*-kNN: an Efficient Algorithm for

Moving k Nearest Neighbor Queries

Sarana Nutanong†‡, Rui Zhang†, Egemen Tanin†‡, Lars Kulik†‡

†Department of Computer Science and Software Engineering

University of Melbourne, Victoria, Australia

{sarana,rui,egemen,lars}@csse.unimelb.edu.au
‡NICTA Victoria Laboratory, Australia

Abstract—This demonstration program presents the V*-kNN
algorithm, an efficient algorithm to process moving k nearest
neighbor queries (MkNN). The V*-kNN algorithm is based on
a safe-region concept called the V*-Diagram. By incrementally
maintaining the V*-Diagram, V*-kNN continuously provides
accurate MkNN query results and supports dynamically changing
values of k. Our approach exploits information regarding the
current location of the query point and the search space in
addition to the data objects. As a result, the V*-kNN has much
smaller IO and computation costs than existing methods.

I. INTRODUCTION

Location-based services provide position information with

a high degree of temporal precision to provide services to the

users. The two following scenarios are examples of location-

based queries where the answer may change according to the

location of the query issuer. An ambulance driver is keeping

track of the nearest available emergency wards at all times. A

delivery driver maintains a list of several nearest gas stations

while driving around the city. The queries are sent to a server

that processes the queries and returns the answers. The server

also has to continuously maintain the answer set which may

change depending on the location of the query point. These

queries are location-based continuous spatial queries and the

scenarios above are typical examples of moving k nearest

neighbor queries (MkNN).

To avoid unnecessary data access, one can define a region

in which the query point can move without changing the

result. Such region is known as a safe region. Using a safe-

region-based method, an MkNN query can be processed by:

(i) finding the current k NNs; (ii) calculating a region that

the current k NNs are valid, i.e., a safe-region of the kNN;

(iii) repeating the first two steps when the query point moves

out of the safe region. Therefore, a safe-region-based method

continuously provides accurate answers without the need for

sampling.

This demonstration program shows the internal mechanism

of a safe-region-based technique called the V*-Diagram [1]

and the associated algorithm, called V*-kNN. The V*-

Diagram has the following key advantages:

(i) It requires no precomputation.

(ii) It incrementally computes answers and therefore ef-

ficiently adapts to changes – such as insertions and

deletions of objects, as well as, dynamically changing

values of k.

Figure 1 shows experimental results on the performance

comparison between our V*-kNN algorithm and the retrieve-

influence-set kNN (RIS-kNN) algorithm [2], which is the

best existing method, with respect to k. The experiments

were conducted on: (i) two types of trajectories, directional

(D) and random (R); (ii) two real datasets of 65, 743 and

119, 897 postal addresses from California and North-Eastern

USA, respectively. V*-kNN outperformed RIS-kNN by one

order of magnitude.

 1

 10

 100

 5 10 15 20

ti
m

e
 (

s
e
c
)

k

V* (D)
V* (R)

RIS (D)
RIS (R)

(a) California

 1

 10

 100

 5 10 15 20

ti
m

e
 (

s
e
c
)

k

V* (D)
V* (R)

RIS (D)
RIS (R)

(b) North-Eastern USA

Fig. 1. Effect of k

The V*-Diagram is based on two types of safe regions,

the fixed-rank region (FRR) and the safe region with regard

to a data point, which are described in Sections II and

III, respectively. A kNN safe region called the integrated

safe region (ISR), which is formulated by calculating the

intersection of the FRR and the safe region with regard to

the current kth NN, is presented in Section IV. The V*-

kNN algorithm is explained in Section V. Our demonstration

program, which shows how the V*-kNN algorithm operates,

is described in Section VI.

II. FIXED-RANK REGION

Kulik and Tanin [3] introduced an algorithm called incre-

mental rank updates (IRU) to compute regions where the

ranking of all the objects (based on their distances) is the

same, i.e., fixed-rank regions.

Based on the observation that only rank-adjacent objects

can swap their ranks, defining the FRR of n objects requires

at most (n − 1) bisectors1 of the (n − 1) pairs of rank-

adjacent objects. Continuously monitored objects are ranked

according to their distances to a moving query point. Updates

are performed by maintaining a rank-sorted list of objects and

its corresponding list of bisectors of pairs of rank-adjacent

objects (rank-adjacent bisectors). Each time the query point

crosses a bisector, the ranks of the two corresponding objects

are swapped and the list of rank-adjacent bisectors are updated.

Given a list L of objects, 〈p1,p2, ...,pn〉, the FRR of

L is the set of all points such that for any point v in the

set, p1,p2, ...,pn are already sorted in ascending order by

their distances to v. Let Hpipj
be defined as {v ∈ DS :

dist(v,pi) ≤ dist(v,pj)}, where DS is the data space. An

FRR is a function of a list and is defined as follows.

Definition 1 (Fixed-rank region):

F 〈p1,p2, ...,pn〉 =

n−1⋂

i=1

Hpipi+1

(a) Initial step (b) First update

Fig. 2. Incremental rank update

Figure 2 shows how the FRR is maintained by keeping track

of the (n − 1) rank-adjacent bisectors. The current FRR is

shown as a grey region. Let us assume that q is the location

of a moving query point which starts at q1. In Figure 2(a), q

is at q1 and the ranking is initially 〈a, c, b,f ,e,d〉. The cor-

responding list of bisectors is 〈 Bac, Bbc, Bbf , Bef , Bde〉.
Then q crosses Bef in Figure 2(b). This causes e and f to

swap their ranks. Therefore Bbf and Bde are replaced by

Bbe and Bdf , respectively.

III. SAFE REGION WITH REGARD TO A DATA POINT

In the V*-Diagram, the incremental NN query is called

repeatedly to help maintain (k+x) NNs, where x is the number

of auxiliary objects. Let us assume that z is the farthest known

1The bisector of two objects a and b is the set of points where each point
is equidistant to a and b.

object to qb, i.e., the (k + x)th NN of qb. Any objects that

has the distance to qb smaller than that of z is guaranteed to

be discovered via the query. Hence, the area enclosed by the

circle centered at qb with the radius of dist(qb,z) is called

the known region, W (qb,z) (shown as the area enclosed by

the dotted circle in Figure 3).

As the query point q moves away from qb, some objects

are no longer reliable. Specifically, an object is reliable when

we know that there are no objects outside the known region

nearer to q than the object. The region that contains all reliable

objects is termed as the reliable region. Assume that the query

point is at q′ in Figure 3. Mathematically, p being in the

reliable region with regard to q′ is expressed as:

dist(q′,p) ≤ dist(qb,z) − dist(qb, q
′). (1)

The reliable region with regard to q′ is the area enclosed by

the dashed circle in Figure 3.

Fig. 3. The known, reliable, and safe regions

The safe region with regard to the data point p is the region

in which the query point can move while p remains reliable.

Figure 3 shows the safe region with regard to p, S(qb,z,p).
Based on Inequality (1), we formally define the safe region

with regard to p and a given know region W (qb,z) as:

Definition 2 (Safe region with regard to a point):

S(qb,z,p) = {q′ : dist(q′,p) + dist(qb, q
′) ≤ dist(qb,z)}

IV. INTEGRATED SAFE REGION

An integrated safe region (ISR) is a region that the order-

sensitive list of k NNs is unchanged as long as the query point

stays inside. The definition is given as follows.

Definition 3 (Integrated safe region (ISR)): Let O be the

(k+x)NN set of qb, L be the list of these (k+x) objects sorted
by their distances to the query point, z be the farthest retrieved

object to qb, and pk be the kth object in L. The integrated

safe region with respect to qb, z, pk and L is defined as:

I(qb,z,pk, L) = F (L) ∩ S(qb,z,pk)
As exemplified in Figure 4(a), four objects retrieved by a

4NN query (k = 2 and x = 2) at q1 are 〈a, c, b,f〉. Point q1

is the most recent point of retrieving (k + x) NNs. As long

as the query point q remains in F 〈a, c, b,f〉 ∩ S(q1,f , c)
(the grey region), we are ensured that (i) no object outside

W (q1,f) is nearer to the two NNs, a and c; (ii) the ranking

of 〈a, c, b,f〉 is unchanged.

(a) F 〈a, c, b, f〉 ∩ S(q1, f, c) (b) F 〈c, a, b, f〉 ∩ S(q1, f, a) (c) F 〈c, a, b, e〉 ∩ S(γ2, e, a)

Fig. 4. Example for Algorithm 1, (k = 2, x = 2)

V. ALGORITHM

The ISR is maintained through the V*-kNN algorithm

(Algorithm 1). The initialization steps (Lines 1-3) involve

retrieving the (k + x) NNs at the initial location of the query

point and creating the FRR and the safe region (Sk) of the

current the kth NN. In the event loop (Lines 4-13), we check

if the query point exits the FRR. If yes, updates are performed

accordingly. We also check if the query point exits Sk. If yes,

we retrieve the new (k+x) NNs at the current location of the

query point, then the FRR and Sk are accordingly created.

Algorithm 1 V*-kNN

1: Retrieve (k + x) NNs

2: Create the FRR of the (k + x) NNs

3: Create the safe region (Sk) of the kth NN

4: while more events do

5: if the query point exits the FRR then

6: Update the ranking and bisectors

7: Update Sk (if the kth NN changed)

8: else if the query point exits Sk then

9: Retrieve new (k + x) NNs

10: Create the FRR of the (k + x) NNs

11: Create Sk

12: end if

13: end while

Next, we give a running example of the algorithm. Recall

the example in Figure 4(a). At the starting point q1, 4 NNs are

retrieved in the order of 〈a, c, b,f〉. The ISR is F 〈a, c, b,f〉∩
S(q1,f , c). Figure 4(b) shows how the ISR changes after q

crosses Bac. At the instant that q is crossing Bac at γ1, a

and c swap their ranks. The object list L becomes 〈c,a, b,f〉,
and this causes both F (L) and Sk to change. Now a becomes

pk (2nd NN), and hence the ISR becomes F 〈c,a, b,f〉 ∩
S(q1,f ,a) (the grey region). The current 2 NNs, c and a,

are reported to the user in order.

Figure 4(c) shows how the ISR changes after q exits

S(q1,f ,a). At the instant that q is exiting S(q1,f ,a) at

S(q1,f ,a), the new (k + x) NNs, 〈c,a, b,e〉, are retrieved.

The ISR becomes F 〈c,a, b,e〉∩S(γ2,e,a) (the grey region).

VI. V*-kNN DEMONSTRATION PROGRAM

The demonstration program is a Java applet consisting of

three panels:

(i) Main Panel. This is located in the middle part of the

applet. This panel displays the locations of the data

objects and the query points. The user can also interact

with this panel by dragging the query point q around the

screen to observe how the V*-kNN algorithm operates

by updating the ISR.

(ii) Control Panel. Using this panel, one can change the

values of k and x, as well as, the appearance of the main

panel. This panel is located at the top of the applet.

(iii) Text Panel. This panel displays descriptions of changes

happened in the main and control panels.

Figure 5 displays four screen shots of the demonstration

program, where each shows: (i) known objects as labelled dots;

(ii) unknown objects as unlabelled dots; (iii) the known region

after a query was executed at qb; (iv) the reliable region after

q moved away from qb. Depending on the combination of

display settings, the program may display the fixed-rank region

and/or the safe region with regard to the kth NN. The default

display mode is exemplified in Figure 5(a) where the fixed-

rank and safe region are not displayed.

As can be seen in Figure 5(b), by checking the Safe

Region box, the safe region with regard to the current kth

NN is shown. Similarly, to display only the fixed-rank region,

the user can check only the Fixed-rank Region box as

can be seen in Figure 5(c). The integrated safe region which is

the intersection of the two regions can be shown by checking

both boxes as shown in Figure 5(d).

VII. ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their

comments that improved our paper. This work is supported

under the Australian Research Council’s Discovery funding

scheme (project number DP0880215).

REFERENCES

[1] S. Nutanong, R. Zhang, E. Tanin, and L. Kulik, “The V*-Diagram: A
query dependent approach to moving kNN queries,” in VLDB, 2008, pp.
1095–1106.

[2] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee, “Location-based
spatial queries,” in SIGMOD, 2003, pp. 443–454.

[3] L. Kulik and E. Tanin, “Incremental rank updates for moving query
points,” in GIScience, 2006, pp. 251–268.

(a) No FRR or safe region displayed (b) Safe region of the kth NN displayed

(c) FRR displayed (d) Both FRR and the safe region of the kth NN displayed

Fig. 5. V*-kNN with k = 2 and x = 3

