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Abstract
Melody extraction is a core task in music informa-
tion retrieval, and the estimation of pitch, onset and
offset are key sub-tasks in melody extraction. Ex-
isting methods have limited accuracy, and work for
only one type of data, either single-pitch or multi-
pitch. In this paper, we propose a highly accu-
rate method for joint estimation of pitch, onset and
offset, named JEPOO. We address the challenges
of joint learning optimization and handling both
single-pitch and multi-pitch data through novel
model design and a new optimization technique
named Pareto modulated loss with loss weight reg-
ularization. This is the first method that can ac-
curately handle both single-pitch and multi-pitch
music data, and even a mix of them. A compre-
hensive experimental study on a wide range of real
datasets shows that JEPOO outperforms state-of-
the-art methods by up to 10.6%, 8.3% and 10.3%
for the prediction of Pitch, Onset and Offset, re-
spectively, and JEPOO is robust for various types of
data and instruments. The ablation study validates
the effectiveness of each component of JEPOO.

1 Introduction
Music information retrieval (MIR) is an essential infrastruc-
ture supporting the daily use of the large music platforms.
Melody is critical to music retrieval such as query/search by
singing and content based music recommendation. Melody
is also the core of music understanding as agreed by many
existing studies [Hawthorne et al., 2018a; Kim et al., 2018;
Gfeller et al., 2020; Gardner et al., 2021; Hawthorne et al.,
2021]. However, the vast majority of music data are in their
audio form, typically .wav or .mp3 files, which do not di-
rectly reflect the melody of the music data. To obtain the
melody of music, we have to perform the so-called melody
extraction, which converts an audio file into a sequence of
notes, consisting of (i) the fundamental frequency f0 (termed
pitch) of the note, (ii) the start of the note (termed onset) and
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(iii) the end of the note (termed offset). Specifically, melody
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Figure 1: Melody extraction.

extraction aims to predict the value of f0, the onset, and the
offset of each note based on the mel-spectrogram of an audio
file as shown in Figure 1, which is a 2-dimensional matrix de-
noting the strength of every frequency during every time seg-
ment (termed frame). It is challenging because the boundaries
of a note (i.e., its onset and offset) are usually blurry and noisy
(c.f. Figure 1), where the yellow signals tend to have sharp
jumps and blurry edges around the beginning and ending of
a note. There has been continued research on melody extrac-
tion, but the effectiveness of existing work still needs sub-
stantial improvements to be really useful in practice. There
are two major challenges described below.

Challenge 1: Joint learning optimization. One line of
studies (e.g., CREPE [Kim et al., 2018] and SPICE [Gfeller
et al., 2020]) focus on predicting only pitches but not on-
sets/offsets. The accuracy of these methods is limited and
sensitive to noise (c.f. Figure 7), because they do not uti-
lize the timing of the notes (onsets/offsets) and do not con-
sider long-term context. It is reasonable to believe that
the prediction of pitch and the prediction of onset/offset
should benefit each other. Therefore, another line of stud-
ies (e.g., OAF [Hawthorne et al., 2018a] and its follow-
ups [Hawthorne et al., 2018b; Kim and Bello, 2019; Kelz
et al., 2019]) perform joint learning of the two tasks pitches
and onsets/offsets. However, they perform joint learning by
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simply summing up the different tasks’ losses as the objec-
tive function, which do not address the following problems:
(i) Model design. What is the suitable model structure for the
joint prediction of pitch and onset/offset. (ii) Data imbalance.
There is a huge imbalance in the labeled data; Specifically,
there are much more negative labels (frames with no pitch)
than positive labels (a frame with at least one pitch), and
there are even fewer frames with onset/offset labels than those
with pitches because a note has only one onset and one off-
set frame but many frames with pitches (c.f. Figure 1). (iii)
Imbalance between the importance of pitch and onset/offset
prediction. Our ultimate goal is to achieve a balanced ac-
curacy of three tasks, pitch prediction, onset prediction and
offset prediction. Weighting one task too high may result in
high accuracy in one task but low accuracy in the others. The
optimal weights between the losses of the three tasks may not
be the same, which is what existing studies assume when they
simply summing up the objective functions of different tasks.
We need to learn the appropriate weights between the three
tasks, which is challenging.

Challenge 2: Handling both single-pitch and multi-
pitch data. Another deficiency of both lines of studies,
which seems to be coincidental with the application each
line of studies have targeted, is that they have been de-
signed for either single-pitch prediction or multi-pitch pre-
diction. This makes them work well for only one case,
but not the other case or a mix of both cases. Specifi-
cally, CREPE [Kim et al., 2018], SPICE [Gfeller et al.,
2020] and their follow-ups have mainly used the single-
pitch (SP) dataset such as MDB-stem-synth [Salamon et
al., 2017]. We call them single-pitch prediction (SPP) al-
gorithms because they were designed to predict only one
pitch at any timestamp. In comparison, OAF [Hawthorne
et al., 2018a] and its follow-ups [Hawthorne et al., 2018b;
Kim and Bello, 2019; Kelz et al., 2019] focus on multi-pitch
(MP) datasets such as MAESTRO-V1.0.0 [Hawthorne et
al., 2018b] and MAPS [Emiya et al., 2009]. We call them
multi-pitch prediction (MPP) algorithms because they were
designed to predict multiple pitches at any timestamp.

Existing SPP algorithms perform poorly on MP datasets
since they are not able to predict multiple pitches at the same
timestamp. Existing MPP algorithms perform poorly on SP
datasets because they were trained on MP data and tend to
predict multiple pitches in a frame. Since SPP is a special
case of MPP, we may improve MPP algorithms by retraining
them on SP data. However, their performance on a mix of SP
and MP data is still poor because their decision boundaries
are different caused by the positive/negative label imbalance.
Specifically, SP data has a much lower positive/negative label
ratio than that of MP data, because in SP data, there is usually
one pitch (positive label) in a frame while in MP data, there
are usually multiple pitches in a frame. In real settings, we do
not know whether the music data is SP or MP in advance, so
neither SPP or MPP algorithms do well in generic settings.

To address above challenges, we propose a highly accu-
rate method for joint estimation of pitch, onset and offset
(JEPOO). Challenge 1 arises from three problems, (i) model
design, (ii) data imbalance and (iii) multi-task weight allo-
cation. To address problem (i), we design a model struc-

ture which has parameter sharing and feature fusion. Focal
loss [Lin et al., 2017] is a popular approach to problem (ii),
and Pareto optimization [Lin et al., 2019] is a popular ap-
proach to problem (iii). However, we find that a direct appli-
cation of focal loss or Pareto optimization separately yields
very limited performance gain. Further, the gain of applying
focal loss and Pareto optimization together is less than the
sum of the gains of applying each technique separately. We
believe this is because the weights obtained by one technique
may conflict with those obtained by the other technique to
some extent. Therefore, we propose a novel way to combine
the two as follows. In focal loss, the (1 − ŷ)γ value is used
to set the weight for each sample. Since Pareto optimiza-
tion produces the weights of the different tasks, we replace
the (1 − ŷ)γ value in focal loss by the task weight resulted
from Pareto optimization. The intuition is that the higher the
weight of a task, the higher the weight of the samples in that
task. This way, we achieve much higher accuracy when using
Pareto optimization together with focal loss, and we call the
resulted loss as Pareto modulated loss (PML). Moreover, to
avoid imbalance between the losses of different tasks, we im-
pose a regularization on the weights of the losses of the three
tasks, which we call loss weight regularization (LWR). The
ultimate optimization method for JEPOO is PML with LWR.

Challenge 2 is caused by the different decision bound-
aries of SPP and MPP algorithms resulted from the posi-
tive/negative label imbalance. Our proposed PML has the
effect of focal loss, which addresses data imbalance and en-
larges the difference of the prediction values of positive and
negative samples for both SP and MP data. Therefore, our
method is robust w. r. t. different decision boundaries (Fig-
ure 6) and addresses Challenge 2.

Our contributions are summarized as follows: i) We pro-
pose JEPOO, a highly accurate method for joint estimation
of pitch, onset and offset. We address the challenges of joint
learning optimization and handling different types of data by
novel model design and a new optimization technique named
Pareto modulated loss with loss weight regularization. ii)
This is the first work that can accurately handle both SP and
MP music data or a mix of them. iii) A comprehensive ex-
perimental study on a wide range of real datasets shows that
JEPOO significantly outperforms state-of-the-art methods by
up to 10.6%, 8.3% and 10.3% for the prediction of Pitch, On-
set and Offset, respectively. Moreover, JEPOO’s performance
is robust for different types of datasets and instruments. The
code of JEPOO is available at https://gitee.com/mindspore/
models/tree/master/research/recommend/JEPOO.

2 Related Work
2.1 Pitch Prediction
Pitch prediction, also termed pitch estimation, has been stud-
ied extensively [Noll, 1967]. Once we have extracted the
pitches, then we can use them as features for MIR by re-
cent recommendation algorithms such as [Su et al., 2021;
Wang et al., 2021]. Existing work on pitch estimation largely
falls into two categories, SPP and MPP.

For SPP, traditional heuristic methods, such as ACF [Dub-
nowski et al., 1976], YIN [De Cheveigné and Kawahara,
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2002] and pYIN [Mauch and Dixon, 2014], employ a cer-
tain candidate-generating function to produce the pitch curve.
Recently, some neural network based models have been pro-
posed, such as CREPE [Kim et al., 2018], SPICE [Gfeller et
al., 2020]. The accuracy of these methods is limited because
they do not utilize the timing of the notes and hence cannot
learn long-term sequential patterns.

For MPP, there are mainly two types of methods, including
frame-level transcription methods and note-level transcrip-
tion methods[Benetos et al., 2018]. The frame-level tran-
scription methods, such as OAF [Hawthorne et al., 2018a],
ADSRNet[Kelz et al., 2019], Non-Saturating GAN [Kim and
Bello, 2019], using CNN and LSTM to predict pitch results
in each frame. While note-level transcription models, such
as sequence-to-sequence [Hawthorne et al., 2021] and MT3
[Gardner et al., 2021] formulate the note as event to get the
predictions using Transformer. But there is no research try to
unify SPP and MPP algorithms as far as we know.

2.2 Joint Learning in Melody Extraction
Joint learning has been applied to MIR. For example, in [Choi
et al., 2017], a transfer learning approach is used to solve
classification and regression tasks in MIR simultaneously. In
[Bittner et al., 2018], a multi-task deep learning model is used
for melody, vocal and bass line estimation tasks. Besides,
Hawthorne et al. proposed OAF [Hawthorne et al., 2018a] to
jointly learn pitch, onset/offset together, by using onset/offset
predictions to rectify pitch predictions. There are several
follow-ups [Hawthorne et al., 2018b; Kim and Bello, 2019;
Kelz et al., 2019]. Unlike OAF, ADSRNet [Kelz et al., 2019]
shares the bottom parameters and uses a strong temporal prior
in the form of a handcrafted HMM to rectify pitch predic-
tions. However, these joint models do not consider the bal-
ance between different tasks at all.

In order to balance different tasks in joint learning, there
are some optimization methods for multi-task learning, such
as GradNorm [Chen et al., 2018], DWA [Liu et al., 2019],
DTP [Guo et al., 2018] and Pareto [Lin et al., 2019]. Grad-
Norm and DWA make each task learn at a similar rate. DTP
allows the model to give difficult task a bigger weight so as
to dynamically prioritize difficult tasks during training. And
Pareto determines the weight of each task through Pareto op-
timal solutions. However, none of them has been used in MIR
as far as we know.

3 Method
The problem of melody extraction is formulated in Ap-
pendix A.1.

3.1 Model Structure Design
The overall structure is illustrated in Figure 2, which has three
key mechanisms designed for the joint learning of pitch and
onset/offset prediction: (i) Shared bottom layers, (ii) task-
specific multi-label sequential predictors, and (iii) fusion of
high level features, which are detailed below.

Shared bottom layers. To capture common features of
all sub-tasks, we stack several ReConv blocks as the shared
bottom as shown in Figure 3. A ReConv block contains two

base convolutional layers and a skip-connection layer. The
skip-connection layer is a convolutional layer with 1× 1 ker-
nel, while other kernels of base convolutional layers are 3×3.
After element-wisely summing the output of skip-connection
layer and last base convolutional layer, the result goes through
a Relu function and becomes the output. By using ReConv
block, the model can utilize multi-level features and become
much deeper than conventional melody extraction models.

PML with LWR
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Figure 2: The overall structure of JEPOO.

Task-specific multi-label sequential predictors. A note
may contain hundreds of frames, so we design sequential
predictors to utilize long-term features to achieve better per-
formance. Specifically, we design a task-specific sequential
block, which consists of 4 ReConv blocks, a max pooling
layer, a BiLSTM and a full connection layer with sigmoid.
The input of task-specific multi-label sequential predictors is
the output of Shared bottom layer. We call the parameters of
different tasks as onset stack, pitch stack and offset stack. The
output of these stacks is 88-elements vectors, whose elements
are the predicted probability of corresponding labels.

Fusion of high level features. We use the predictions of
onset and offset to help the pitch prediction in our model.
Specifically, we concatenate the output of three stacks as the
input of a BiLSTM layer along with full connection layer and
sigmoid function to get pitch predictions. We do not use the
pitch prediction to help onset/offset prediction due to the fol-

Conv(in, out, 3)

Conv(out, out, 3)
ReLU Conv(in, out, 1)

Identity
ReLU

Figure 3: The details of residual convolution (ReConv) block.
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lowing reason. Onset/offset data only has positive labels in
the starting/ending frames of a note, while pitch data has pos-
itive labels in almost all the frames of a note. The different
distribution of pitch labels and onset/offset labels cause two
impact. On the one hand, the positive labels of pitch between
the starting and ending frames can be noise to Onset/Offset
prediction. On the other hand, pitch prediction are inaccurate
at boundaries of notes, and the onset/offset prediction can rec-
tify the boundaries of note. Our experimental study validates
the effectiveness of this design (see Appendix A.7).

3.2 Pareto Modulated Loss With Loss Weight
Regularization (PML with LWR)

To address the problems of data imbalance and multi-task
weight allocation, we propose to use a combination of fo-
cal loss and Pareto optimization. Next, we firstly describe a
naive combination of Pareto optimization and focal loss be-
low, but it only yields limited performance improvement. We
then present Pareto Modulated Loss (PML) with Loss Weight
Regularization (LWR), which works much better.

Naive Combination of Pareto Optimization and Focal
Loss (Naive Optimization). Focal loss is popular to balance
the category within a sub-task by setting hyper-parameter α
and shift the decision boundaries. Pareto optimization is pop-
ular to allocate the weight of sub-tasks. A naive way to com-
bine these two techniques is to multiple the Focal loss with
the task weight produced by Pareto optimization as follows,
and we call it the naive optimization.

Ltask = −
n∑
i

ωiαiyi(1− ŷi)γ
i

log ŷi (1)

where ωi is a Pareto optimal solution for ith sub-task and yi

is the label of ith sub-task, n is the total number of sub-tasks.
Our empirical evaluation in section 5.2 shows that the naive

optimization addresses data imbalance and weight allocation
to some extent, but the improvement is limited. The reason
may be as follows. Firstly, focal loss needs to search two
hyper-parameters for each sub-task, resulting in high cost of
grid search. As we mentioned above, data of different tasks
varies hugely, so it is hard to determine the scale and preci-
sion of data related hyper-parameter γ for each sub-task and
results in sub-optimal hyper-parameters. What’s worse, as
the number of tasks grows, grid search space grows exponen-
tially. Secondly, Pareto optimal solution may be imbalance
between tasks, resulting in some tasks hard to optimize. The
model may need to be trained many times before making all
the tasks are optimized.

PML with LWR. We propose a novel Pareto Modulated
Loss (PML) by integrating Pareto optimization and focal loss
to reduce the high training cost of focal loss. In addition, we
design a loss weight regularization method to avoid the im-
balance between the loss weights of Pareto optimal solution.

PML is based on our observation that the difficulty of a task
reflects the difficulty of its own data. Thus, we try to replace
the item (1− ŷ)γ of focal loss by the task weight produced by
Pareto optimization. This way, data in different batches have
different weights, and the grid search space becomes at 50%
less than the focal loss.

After getting the Pareto optimal weights [ω1, ..., ωn] of dif-
ferent tasks’ loss, we use a MLP layer to get the final weights.
i.e. [ω1

PML, .., ω
n
PML] = softmax(W[ω1, ..., ωn]+b). The

formal form of PML is written as follows:

Ltask = −
n∑
i

ωi
PMLα

iyi log ŷi (2)

PML obtains more discriminative ability than Pareto opti-
mization without introducing any hyper-parameter. More-
over, PML has the effect of focal loss, which enlarges the
difference between positive and negative sample predictions.

To avoid imbalance of loss weights, we design a simple yet
efficient Loss Weight Regularization (LWR) as follows:

Lre =
n∑
i

||nωi
PML − 1||p (3)

ωPML represents the loss weight of different sub-tasks. Be-
cause

∑n
i ω

i
PML = 1, the LWR gives penalty to the weight

that is far away from the average.
Then final PML with LWR loss is defined as follows:

Ltotal = Ltask + λLre (4)

Compared with PML, PML with LWR only introduces one
more hyper-parameter than Pareto optimization, the weight
of LWR item λ. The grid search cost is much less than the
native optimization.

4 Experimental Setup
Datasets. To compare with previous pitch prediction meth-
ods on SP and MP data, we use three real datasets MDB-
stem-synth [Salamon et al., 2017], MAPS [Emiya et al.,
2009] and MAESTRO-V1.0.0 [Hawthorne et al., 2018b].
MDB-stem-synth is a SP dataset. It contains 230 resynthe-
sized monophonic music files spanning 25 musical instru-
ments corresponding perfect f0 annotation. MAPS has a very
small percentage of SP data and a majority of MP data. It
contains 270 raw audio recordings of piano music and cor-
responding MIDI-annotated piano recordings. MAESTRO-
V1.0.0 is a MP dataset larger than MAPS. It contains 172.3
hours of paired audio and MIDI recordings from ten years of
International Piano-e-Competition.
Evaluation Metrics. Following MT3 [Hawthorne et al.,
2018a] and CREPE [Kim et al., 2018], we use 4 metrics to
evaluate our model. These metrics are computed by mir eval
[Raffel et al., 2014]. The details are described as follows:
The F1 score of pitch prediction (Pitch) uses a binary mea-
sure of whether the prediction of a frame and the ground truth
matches. Each second will be divided into a fixed number of
frames, and the sequence of notes is represented as a binary
matrix of size [frames × 88], which indicates the presence or
absence of an active note at a given pitch and time. Note with
onset (Onset) considers a prediction to be correct if it has the
same pitch and is within ±50ms of a reference onset. Note
with onset and offset (Onset&Offset). In addition to matching
onsets and pitches as above, this metric requires the note to
also end in this frame (offset). Voicing false alarm rate (VFA)
computes the proportion of non-melody frames in the ground
truth but are mistakenly predicted as melody frames.
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Methods F1(%) on MDB-stem-synth(SP) F1(%) on MAPS(SP&MP) F1(%) on MAESTRO(MP)
Pitch Onset Onset&Offset Pitch Onset Onset&Offset Pitch Onset Onset&Offset

PYIN* [Mauch and Dixon, 2014] 79.6 56.5 56.4 12.5 28.4 28.1 10.5 25.0 24.4
CREPE* [Kim et al., 2018] 90.6 78.5 78.5 26.0 41.3 40.8 21.5 41.3 40.2

OAF-retrain [Hawthorne et al., 2018a] 95.3 90.9 89.8 79.7 81.9 61.7 89.7 94.1 79.6
OAF* [Hawthorne et al., 2018a] 65.5 38.2 26.5 71.7 80.8 40.8 90.2 95.3 80.5

ADSRNet† [Kelz et al., 2019] —— —— —— 77.2 81.4 56.1 —— —— ——
Non-Saturating GAN† [Kim and Bello, 2019] —— —— —— —— —— —— 91.4 95.6 81.3

KJN† [Kwon et al., 2020] —— —— —— —— —— —— 83.8 94.7 79.4
sequence-to-sequence* [Hawthorne et al., 2021] 20.0 29.8 22.7 47.1 75.7 35.4 66.0 96.0 83.5

MT3* [Gardner et al., 2021] 12.0 4.8 2.3 74.4 80.7 51.6 86.0 95.0 80.0
JEPOO 97.1 96.0 95.6 81.6 84.2 65.6 93.0 96.5 84.0

Table 1: Performance comparison on both SP and MP datasets in terms of F1 score. * means we reproduce the results using authors’ open
source checkpoints. † represents we copy the results from original papers. OAF-retrain represents retraining OAF on three open datasets.
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Figure 4: Performance on synthetic test datasets with different proportion of multi-pitch data. The results of CREPE, MT3 and OAF are
reproduced by using authors’ open source checkpoints. OAF-retrain represents retraining OAF on synthetic train dataset.

5 Experimental Results
Firstly, we compare JEPOO with SOTA methods on both real
datasets and synthetic datasets of mixed SP and MP data. We
then perform an ablation study to understand the effective-
ness of the techniques we propose. Finally, we investigate the
robustness of JEPOO on different types of datasets and instru-
ments. The implementation details and comparison systems
are provided in Appendix A.2 and A.3 respectively.

5.1 Main Results
Experiment on real datasets. Table 1 shows the results of
comparing JEPOO with SOTA methods on the three afore-
mentioned real datasets. We observe that JEPOO outperforms
all the other methods on the datasets and all the tasks (Pitch,
Onset, Onset&Offset) consistently. JEPOO outperforms the
naive joint learning method OAF at all metrics by up to 30%,
58%, 69% in pitch, onset and offset prediction, respectively.
This confirms that naive joint learning is far from optimal
and our methods are necessary. JEPOO also outperforms SPP
methods (CREPE, PYIN) on SP data, and MPP methods (all
the rest) on MP data, respectively. Even we retrain OFA on
SP data, and get the improved OAF-retrain method, JEPOO
still outperforms OAF-retrain significantly on all tasks. These
results show the effectiveness of our model design and opti-
mization techniques.

Moreover, it should be noted that existing methods do not
perform well on SP and MP data, simultaneously. As shown
in Table 1, SPP models (CREPE and PYIN) perform poorly
on MP datasets. MPP models (OAF, MT3 and sequence-to-
sequence) perform poorly on SP datasets.

Experiment on synthetic dataset mixing SP and MP data.
In real application scenarios, melody extraction models need
to handle both SP and MP music data, because we are unable
to know the data type in advance. Unfortunately, the cur-
rent datasets are not suitable to evaluate such ability. Though
MAPS is created to evaluate both SPP and MPP, the amount
of different data are unbalance. Multi-pitch frames are 6
times as many as single-pitch frames. Worse still, the pro-
portion of single-pitch frames in real audios is unknown.

To create a dataset that can evaluate the ability of JEPOO
on handling both SP and MP data, we take two steps: Firstly,
we mix the train dataset of MAPS and MDB-stem-synth to
create synthetic train dataset. Secondly, to simulate various
situations of real audio, we create multiple test datasets with
different proportions of multi-pitch data by adding different
amount of MDB-stem-synth test data into MAPS test dataset.
The proportion ranges from 0 to 1 with the step of 0.25.

We retrain JEPOO and OAF on the synthetic train dataset.
Figure 4 shows the evaluation results on different synthetic
test datasets. In this figure, JEPOO outperforms all the other
methods at any proportion of MP data significantly. JEPOO
outperforms SOTA method by up to 10.6%, 8.3% and 10.3%
at pitch, onset and offset prediction, respectively. By contrast,
current models only work well on one type of data. For ex-
ample, the SPP model CREPE decreases fastest as the raising
of the proportion of MP data. MT3 performs worst when SP
data is in majority. OAF-retrain gets second best results, but
the gap of JEPOO and OAF-retrain increases with increas-
ing of the proportion of MP data. These results indicate the
ability of JEPOO to handle SP and MP data simultaneously.
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Figure 5: The performance of different models with different instruments. OAF-retrain represents retraining OAF.

Through comparing with Table 1, we find that OAF trained
on synthetic dataset get worse performance than the model
trained on SP and MP dataset respectively, decreasing at pitch
prediction by 2.9% on MDB-stem-synth test dataset and 8.5%
on MAPS test dataset. While JEPOO trained on synthetic
dataset improves 0.2% on MAPS test dataset. This result
indicates that simply training model on synthetic data can-
not improve model performance. Experiments on synthetic
dataset of mixing SP and MP data show the ability of JEPOO
to handle both SP and MP music data, which has great prac-
tical value in MIR systems.

5.2 Ablation Study
In this experiment, we not only evaluate different optimiza-
tion techniques, but also compare JEPOO with naive joint
learning, single task training on synthetic datasets. We con-
ducted ablation studies of each component of JEPOO. More
ablation studies about optimization techniques, sequential
predictor, model structure and feature fusion are given in Ap-
pendix A.4, A.5, A.6 and A.7, respectively.

From Table 2, we observe that naive joint learning does

Methods F1(%) on MAPS+MDB-stem-synth
Pitch Onset Onset&Offset

JEPOO 87.6 88.3 77.4
JEPOO with naive optimization 87.2 87.9 76.8

JEPOO with only FL 86.9 87.5 76.4
JEPOO with only Pareto 86.4 87.9 76.1

Naive joint learning of pitch, onset and offset 86.0 87.2 74.4
Naive joint learning of pitch and onset 85.5 87.4 74.3

Single model of pitch (SMP) 86.7 80.1 68.3

Table 2: Ablation study on different optimization techniques in
terms of F1 score. The test dataset is 1:1 mixed SP and MP data.

not improve all sub-tasks, though pitch, onset and offset are
highly related. For example, the naive joint learning of pitch,
onset and offset decreases 0.7% at Pitch than SMP. While JE-
POO with naive optimization and JEPOO both outperform
naive joint model at all metrics. Although JEPOO with naive
optimization performs better than JEPOO with only FL and
JEPOO with only Pareto, but the improvement is only 1.2%
at Pitch, which is less than the sum of separated improvement
of focal loss (0.4%) and the Pareto optimization (0.9%). In
addition, JEPOO with naive optimization achieves the same
performance at Onset than JEPOO with only Pareto. JEPOO

improves 1.6% at Pitch, 3.0% at Onset&Offset than naive
joint model. Besides, the training cost of naive optimization
is about four times as PML with LWR. Above results show
that PML with LWR can better balance different sub-tasks
and data in a low training cost than naive optimization.

5.3 Robustness of JEPOO
Experiment with different instruments. It is obviously that
the performance of melody extraction varies on different in-
struments. To investigate the impact of instruments on our
method, we deeper evaluate JEPOO on the multi-instrument
dataset MDB-stem-synth along with OAF and CREPE. The
reason that we only compare with these baselines is that OAF-
retrain achieves second best results on MDB-stem-synth and
CREPE is designed for this dataset. In this experiment, we
use stratified sampling to split the train and test dataset, ensur-
ing that the distribution of instruments is consistent between
two datasets. By this way, the train and test datasets contain
25 instruments, such as bass, violin, flute and singing voice
etc. We retrain JEPOO, OAF on the new multi-instrument
dataset and evaluate these models on the new test dataset.

From the results on various instruments shown in Figre 5,
there are following conclusions: i) JEPOO consistently out-
performs OAF-retrain and CREPE at all metrics on all in-
struments. This result shows better discrimination ability of
our method on different instruments than SOTA methods. ii)
Our method has excellent generality on different instruments.
From Figure 5, we can see that JEPOO achieves more sta-
ble performance than OAF-retrain and CREPE. The F1 score
variances of JEPOO are only 4.0, 5.1 and 5.0 at Pitch, Onset
and Onset&Offset, respectively. While the variances of OAF-
retrain are 11.5, 8.0 and 9.6, and the variances of CREPE are
95.2, 135.1 and 135.1. The high variance of CREPE is be-
cause the checkpoint is trained on unbalanced instrumental
datasets. The above conclusions demonstrate the high accu-
racy and robustness of JEPOO on multiple instruments.
Robustness on SP and MP datasets. To evaluate the ro-
bustness of JEPOO on handling SP and MP data, we train
JEPOO and OAF on the synthetic train dataset and evaluate
them with different positive thresholds on SP and MP dataset,
respectively. There is a positive prediction when predicted
probability is larger than the positive threshold. We test posi-
tive thresholds from 0.1 to 0.9 with step 0.1. The left of Fig-
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ure 6 reports the result on SP dataset MDB-stem-synth and
the right of Figure 6 reports the result on MP dataset MAPS.
According to Figure 6, we can draw following conclusions:
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Figure 6: Comparison of different thresholds on MAPS (MP) and
MDB-stem-synth(SP).

Firstly, JEPOO outperforms OAF-retrain on MDB-stem-
synth and MAPS at all thresholds. Specifically, on MDB-
stem-synth dataset, OAF-retrain achieves 91.7%, 90.0% and
87.2% at Pitch, Onset and Onset&Offset with the best thresh-
old. JEPOO achieves 95.3%, 94.3% and 92.8% at Pitch, On-
set and Onset&Offset when the best threshold is 0.5. There is
a similar result on MAPS dataset. These results indicate that
JEPOO can separate positive and negative samples clearly,
making it robust against noise.

Secondly, JEPOO is more robust on both SP and MP data.
The best threshold of JEPOO is near 0.5 on both SP and
MP dataset, while the best threshold of OAF-retrain is just
0.2. When the threshold grows from 0.1 to 0.9, JEPOO de-
creases less than 0.7% at Pitch, 1.0% at Onset and 1.4% at
Onset&Offset on SP dataset, and less than 3.1%, 1.2% and
2.4% on MP dataset. However, OAF-retrain decreases signif-
icantly when the threshold grows from 0.1 to 0.9, up to 9.6%
at Pitch on MP dataset. Above results show the robustness of
JEPOO on handing SP and MP datasets.
Non-Melody Frames Robustness. To evaluate robustness on
non-melody frames, we use Voicing false alarm rate (VFA)
to evaluate different models and report the results in Table
3. The smaller at VFA, the better performance of the model.
In this experiment, we add white noise into clean audios to
simulate real audios. We use Signal-to-noise ratio (SNR) to
measure noise. The higher of SNR means the less of noise.
Thus, the SNR INF in Table 3 represents raw clean audio.

JEPOO hardly predict pitch at non-melody frames on clean

audios. In Table 3, JEPOO achieves only 0.2% at VFA, while
CREPE is 48 times higher. Besides, when SNR is down to

Methods VFA(%) on MDB-stem-synth
SNR INF SNR 50

CREPE [Kim et al., 2018] 9.8 28.0
OAF-retrain [Hawthorne et al., 2018a] 0.5 11.8

JEPOO 0.2 3.6

Table 3: Comparison of different models at non-melody frames in
terms of VFA score.

50, the VFA of our model only increase to 3.6%, while OAF-
retrain is up to 11.8% and CREPE is up to 28%. Although
OAF-retrain only achieves 0.5% at VFA when no noise, but
we find OAF-retrain predicts a pitch when the probability is
higher than 0.03. This relative low threshold makes OAF is
influenced by noise easily. As our model, the frame will be
predicted positive only when the output probability is greater
than 0.5. The above results show that JEPOO is more robust
on non-melody frames and can predict correctly on almost
all non-melody frames, since our model can separate positive
and negative samples more clearly.
Case study of Robustness. To intuitively understand the
performance at non-melody frames, we visualize the result
of a case to compare JEPOO and CREPE in Figure 7. We
firstly extract clean vocals using ResUNetDecouple+ [Kong
et al., 2021] from the clip (12s-41s) of 403th song in the
MIR ST500 [Wang and Jang, 2021]. From this figure, we
observe that our method predicts no pitch at non-melody
frames, while CREPE predicts high pitch value at non-
melody frames. This is because CREPE can be influenced
by small noise (top left on mel-spectrogram) easily. In ad-
dition, the predictions of JEPOO coincide more closely with
the ground truth, the red line in figure, than CREPE. Above
results indicate the robustness of JEPOO in another aspect.
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Time

0
64

128
256
512

1024
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4096
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0 5 10 15 20 25

JEPOO
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Figure 7: Case study of Robustness. The left is the predictions of
CREPE, and the right is the predictions of JEPOO.

6 Conclusion
In this paper, we propose JEPOO, a highly accurate method
for joint estimation of pitch, onset and offset by proposing
novel model design and a new optimization technique named
Pareto modulated loss with loss weight regularization. JE-
POO significantly outperforms state-of-the-art methods by up
to 10.6%, 8.3% and 10.3% for the prediction of Pitch, Onset
and Offset, respectively, and JEPOO’s performance is robust
for different types of datasets and instruments.
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A Appendix
A.1 Problem Formulation
In this section, we formulate the problem of melody extrac-
tion, for both SPP and MPP. In some studies, this is also
called music transcription. The input is a Mel-spectrogram as
shown in Figure 1, which is a 2-dimensional matrix XT×F ,
where T is the count of audio frames and F is the num-
ber of frequency bins. Melody extraction coverts the Mel-
spectrogram into a sequence of pitch values representing the
f0 of the note; these are integer values typically in the range
of 21 to 108. Thereby, melody extraction needs to predict
the pitch value of each note, the starting frame of the note
(onset) and the ending frame of the note (offset). In the liter-
ature, these are treated as multi-label classification problems
for each frame. Specifically, each frame t of an audio is la-
beled by three 88-element one-hot arrays, [yp,yon,yoff]. The
elements of yp, yon and yoff correspond to pitches, onsets and
offsets, respectively. Thus, the melody extraction task can be
formally written as F : XT×F → YT×3×88.

A.2 Implementation Details
The raw audio is sampled at 16 kHz and then transformed
into Mel-spectrograms with log amplitude which has 229 mel
bins. The hop length of Mel-spectrograms is 512 and the
Hann window size is 2048. And we cut the frequency be-
tween 30Hz and 8000Hz to extract the Mel-spectrograms.
Above audio processing uses librosa [McFee et al., 2015],
which is the same as OAF[Hawthorne et al., 2018a].

The input and output channels of all ReConv blocks are
marked in Figure 2, and all kernel sizes are introduced in Fig-
ure 3. Kernel size of MaxPool is (1, 2). The dimension of in-
put and output of BiLSTM are both 768. We set the batch size
as 16 and use the Adam optimizer [Kingma and Ba, 2014].
Each training audio is randomly selected from original audio
with same duration, 12.8s. The learning rate is initialized as
0.0005 and reduced by 0.98 of the previous learning rate ev-
ery 10000 iterations. We use the code released by [Lin et al.,
2019] to implement Pareto optimization. The initial weights
of different sub-tasks are all 1, and we search new weights
every 10 iterations. In loss weight regularization, we use L2

distance, and the weight λ is 0.04.
We use the same way as CREPE[Kim et al., 2018] to split

MDB-stem-synth into train and test datasets. The split way
of MAPS is the same as OAF [Hawthorne et al., 2018a]. The
split way of MAESTRO are introduced in [Hawthorne et al.,
2018b]. We process MIDI files of MAPS and MAESTRO
using the same method as [Hawthorne et al., 2018a]. The
raw labels in time, frequency are transformed to note onset
time, note offset time and midi numbers similar to MAPS and
MAESTRO, when processing the MDB-stem-synth dataset.

A.3 Comparison System
We compare JEPOO with some recently proposed melody
extraction methods. CREPE [Kim et al., 2018] and pYIN
[Mauch and Dixon, 2014] are the SPP methods and have
open source checkpoints. We do not compare our model with
SPICE [Gfeller et al., 2020], because SPICE does not open
code and use different metrics.

OAF [Hawthorne et al., 2018a] is the first joint model and it
has been designed for multi-pitch estimation. Its source code
is publicly available and it has been trained on MP datasets.
As discussed in Section 1, we may retrain it on SP data or
mixed SP and MP data to get better performance, so we have
retrained OAF on the various datasets respectively for each
experiment and refer to this retrained version as OAF-retrain.
The results of ADSRNet [Kelz et al., 2019], Non-Saturating
GAN [Kim and Bello, 2019] and KJN [Kwon et al., 2020]
are directly obtained from their original papers, because they
do not make their code available.

MT3 [Gardner et al., 2021] and sequence-to-sequence
[Hawthorne et al., 2021] are Transformer-based multi-pitch
estimation models. The results of both models are reproduced
by using authors’ open source checkpoints. We do not com-
pare our model with SpecTNT [Lu et al., 2021], because it
does not open code and is evaluated on different datasets.

A.4 Ablation Study of Optimization Techniques

Methods F1(%) on MAPS
Pitch Onset Onset&Offset

JEPOO 81.8 83.7 65.6
JEPOO with naive optimization 81.5 83.1 64.9

JEPOO with only FL 80.5 82.6 64.1
JEPOO with only Pareto 80.8 82.2 63.9

Naive joint learning of pitch, onset and offset 79.8 82.1 63.5
Naive joint learning of pitch and onset 79.6 82.8 62.4

Single model of pitch (SMP) 80.2 75.1 58.6

Table 4: Ablation study on different optimization techniques in
terms of F1 score. The test dataset is MAPS (MP) dataset.

In this section, we report more results of ablation studies for
optimization techniques. Experimental settings are the same
as those in Section 5.2. We evaluate different optimization
techniques on MAPS and MDB-stem-synth datasets, and the
results are shown in Table 4 and Table 5 respectively.

Methods F1(%) on MDB-stem-synth
Pitch Onset Onset&Offset

JEPOO 95.3 94.3 92.9
JEPOO with naive optimization 94.9 94.1 92.5

JEPOO with only FL 94.3 92.5 92.1
JEPOO with only Pareto 94.1 91.4 92.0

Naive joint learning of pitch, onset and offset 93.8 90.4 91.6
Naive joint learning of pitch and onset 92.9 90.1 87.4

Single model of pitch (SMP) 94.2 82.5 80.8

Table 5: Ablation study on different optimization techniques in
terms of F1 score. The test dataset is MDB-stem-synth (SP) dataset.

A.5 Comparison of BiLSTM and Transformer
In this section, we compare the effect of using BiLSTM or us-
ing Transformer in Table 6. We use Transformer with differ-
ent layers to replace every BiLSTM in Figure 2. Besides, we
also report the performance with different optimization tech-
niques that we proposed. From this Table, we find that models
with BiLSTM achieves better performance at two of the three
metrics, Pitch and Onset&Offset. Based on this result, we
adopt BiLSTM in our model design, rather than Transformer.
In addition, 70% of models using PML with LWR have better
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(BiLSTM or Transformer, #shared, #unshared)
F1(%) on MAPS+MDB-stem-synth

Base PML+LWR
Pitch Onset Onset&Offset Pitch Onset Onset&Offset

OAF-retrain 82.7 83.8 71.9 82.7 83.8 71.9
(BiLSTM, 6, 4) 86.8 87.6 75.4 87.2 88.0 76.6

(1 Transformer, 6, 4) 85.0 86.9 72.5 85.0 87.0 73.0
(2 Transformer, 6, 4) 86.5 87.9 75.8 86.4 88.2 75.6
(3 Transformer, 6, 4) 86.8 88.1 76.2 86.5 88.1 75.8
(4 Transformer, 6, 4) 86.5 87.7 75.7 86.5 87.5 75.8
(1 Transformer, 6, 8) 85.5 87.7 73.7 85.7 87.7 74.9
(2 Transformer, 6, 8) 86.1 88.0 75.5 86.3 88.5 75.9
(3 Transformer, 6, 8) 86.9 88.1 76.6 86.9 88.6 76.8
(4 Transformer, 6, 8) 86.6 87.7 76.1 86.9 88.2 76.4

JEPOO (BiLSTM, 6, 8) 87.2 87.9 76.8 87.6 88.3 77.4

Table 6: The comparison between using BiLSTM or using different layers of Transformer in terms of F1 score. #shared means the number
of convolutional layers in shared layers, #unshared means the number of convolutional layers for specific sub-tasks. The test dataset is 1:1
mixed SP and MP data.

performance than the one using the naive optimization tech-
nique. This result indicates the generality of PML with LWR,
and the effectiveness of PML with LWR on joint learning,
which can be found in section 5.2.

A.6 Ablation Study of Convolutional Layers
In this section, we show the effect of convolutional layers and
skip connection in Table 7. We adjust the number of convolu-

(#shared, #unshared, F1(%) on MAPS+MDB-stem-synth
skip-connection) Pitch Onset Onset&Offset

OAF-retrain 82.7 83.8 71.9
(10, 4, True) 80.4 81.0 62.0
(6, 4, True) 87.2 88.0 76.6
(6, 4, False) 87.1 87.9 76.6
(6, 8, True) 87.6 88.3 77.4
(6, 8, False) 87.2 88.1 77.0
(6, 12, True) 87.2 88.3 76.9
(6, 12, False) 87.2 87.7 76.4

Table 7: Comparison of different numbers of convolutional layers
and whether to use skip connection in terms of F1 score. These mod-
els is trained on mixed train dataset of MDB-stem-synth and MAPS.
The test dataset is 1:1 mixed SP and MP data. skip-connection
means whether to use skip connection.

tional layers in shared layers and sub-task’s stacks. All mod-
els use PML with LWR. Compared to third line model (6, 4,
True), the second line model (10, 4, True) adds four convolu-
tional layers in shared layers, while the performance at Pitch,
Onset and Onset&Offset metrics all decrease. This result in-
dicates that oversharing decreases the discriminate ability of
sub-tasks, and we need to limit the depth of shared layers.
Compared to the model without skip connection, model with
skip connection gets better performance with the same con-
volutional layers. This is because skip connection can utilize
multi-level features and improve the performance. The fifth
line model (6, 8, True) gets the best performance, and we
adopt the configuration in other experiments.

A.7 Ablation Study of Fusion Features
We evaluate the effect of different fusion methods in this sec-
tion, and the results are shown in Table 8. The model in last
line, whose pitch detector does not use the output of Onset
stack and Offset stack. From third line to sixth line, these

model’s onset prediction and offset prediction fuse the out-
put of pitch stack as input features with the corresponding
weights, while pitch prediction uses onset and offset features
as JEPOO. The model in the second line is JEPOO. Based on
JEPOO, the model in the first line also fuses the onset predic-
tion to offset, and the offset prediction to onset.

Fusion Methods F1(%) on MAPS+MDB-stem-synth
Pitch Onset Onset&Offset

Fuse features 87.1 87.9 75.0for pitch, onset/offset
Fuse features 87.6 88.3 77.4for pitch
Fuse features 87.0 87.8 75.2for all sub-tasks(0.3)
Fuse features 86.4 87.6 73.7for all sub-tasks(0.5)
Fuse features 83.8 84.8 63.9for all sub-tasks(0.8)
Fuse features 81.7 83.9 62.5for all sub-tasks(1.0)
Without fusion 86.9 88.0 74.7

Table 8: Comparison of different fusion methods in terms of F1
score. These models is trained on mixed train dataset of MAPS and
MDB-stem-synth. The test dataset is 1:1 mixed SP and MP data.

From this table, we can conclude that the output of pitch
stack may be the noise of onset and offset predictions. Be-
cause the performance of the fifth line model drops signifi-
cantly than the last line model. Moreover, the performance
increases as the weight of the pitch stack output decreases.
Besides, our fusion method achieves the best performance.
This may be because the majority of the pitch is not the on-
set/offset, and feeding such predictions to the predictor of
onset/offset will actually harm the performance (making the
model tend to always predict no onset/offset). On the other
hand, the onset/offset frames indicate the beginning and the
ending of pitches, so the onset/offset frames provide helpful
information for the pitch prediction.

Ideally, the model should learn to ignore the noise of
pitches in the onset and offset tasks if we fuse the feature of
pitches, but this is only true when there is sufficiently labeled
data. In reality, due to the nature of the data as described in
Section 1, there are much more frames with pitch labels than
the frames with onset/offset labels, and this makes it difficult
for the model to learn the patterns.
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