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Abstract—Re-ranking, as the final stage of the multi-stage
recommender systems (MRS), aims at modeling the listwise
context and the cross-item interactions between the candidate
items. The objective is usually the overall utility (e.g., total
clicks or revenue) of the re-ranked list, which is determined
not only by the relevance, but also by the diversity of the
list. However, existing methods equally promote diversity for all
users and often compromise the relevance ranking. In reality,
users have different diversity preferences and we should diversify
the list tailored to individual users’ interests and needs. Users’
behavior history contains rich information which may be used
for inferring their diversity preferences, but has rarely been
explored in existing work. In this work, we propose a novel neural
re-ranking with personalized diversification method (dubbed
RAPID) to address the above challenge. RAPID explicitly models
each user’s preference distribution over different topics by
exploiting the intra- and inter-topic interactions from the user’s
behavior history. The personalized diversity gain brought by each
candidate item is then measured by the item’s marginal diversity
and the learned personalized preference. The relevance and the
personalized diversity are jointly optimized in an end-to-end
manner to automatically manage the relevance-diversity tradeoff.
Experimental results on two public datasets and a proprietary
dataset show that RAPID outperforms the state-of-the-art with
the highest utility and the best relevance-diversity tradeoff. We

further prove that RAPID has a regret bound of Õ(
√

n) on
utility, which provides theoretical guarantee that its performance
is near-optimal.

I. INTRODUCTION

Multi-stage Recommender Systems (MRS) are widely

adopted by many large online platforms [1]–[4], where the

recommendation process is split into multiple stages to meet

the requirement of short response time. Typical stages in MRS

includes recall (a.k.a, matching), ranking, and re-ranking [5].

Each stage narrows down the relevant items with a slower but

more accurate model [6]. The re-ranking stage, as the final

stage in MRS, has a direct impact on user experience and sat-

isfaction, and thus plays a critical role in recommendation. The

re-ranking stage focuses on modeling listwise context/cross-

item interactions between candidates, where whether an item

is relevant to a user is not only determined by the item itself,

*Equal contribution.
†Corresponding authors.
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Fig. 1: A motivating example of different re-ranking strate-

gies: (a) purely relevance-oriented re-ranking; (b) traditional

diversity-aware re-ranking; (c) re-ranking with personalized

diversification. Different shapes denote different topics.

but also depends on other items placed in the same list [2],

[5], [7]. The overall listwise relevance is the combined effect

of all the items in the list.

Recent re-ranking evolves to the deep neural architectures

and its performance is greatly benefited from the automatic

learning of the listwise context [2], [7]–[9]. However, most

neural re-ranking models are purely relevance-oriented1 [1],

[2], [4], [7], and often lead to similar or near-duplicate re-

ranked results [9], [10]. The lack of exploration of diverse

items can hurt users’ satisfaction and cause the filter bubble

effect [9]–[12]. To diversify the recommendation results, sev-

eral neural diversity-aware models have been proposed [9],

[11], [13], [14]. While re-ranked lists are more diverse, users’

personal preferences for diversity are overlooked.

In fact, diversification for re-ranking should be tailored and

personalized. Users’ preferences over different topics (e.g.,

categories or genres of items) vary greatly [15], [16]. For

example, some users may have a narrow taste and highly

prefer a particular type of music, say a classical music lover,

while others may be open-minded and enjoy diverse styles

of music. Therefore, assuming users’ diversity preferences

are the same and equally increasing diversity for all users

may hurt users’ satisfaction, especially for users with focused

1In this work, relevance represents how likely an item is found attracted,
and utility is a listwise metric and measures the total click or income of a
list, depending on relevance, list diversity, and other context factors.



interests. Instead, diversification should suit individual user’s

diversity preference. Figure 1 illustrates how re-ranking can be

benefited from personalized diversification. User 1 has broad

interests and favored multiple topics in the past (marked by

different shapes in her behavior history), while user 2 has

focused interests and was attracted by only one topic. A purely

relevance-oriented re-ranking model (a) tends to recommend

a list of items from similar topics, ignoring user 1’s diverse

tastes. For traditional diversity-aware models (b), the re-ranked

lists are highly diversified but present users with uninterested

topics, which sacrifices the total utility. In contrast, re-ranking

with personalized diversification (c) diversifies the lists as per

the user’s interests over different topics, showing the potential

to jointly optimize relevance and diversity. Specifically, on

the one hand, if most items in the list are similar as in (a),

users probably only click the one most relevant item and yield

relatively limited overall utility. A diverse list that fits users’

complete interests as in (c) can fulfill users’ multiple informa-

tion needs from different aspects, and thus encourages multiple

clicks. On the other hand, providing diverse recommendation

to users with diverse interests improves the overall diversity.

Moreover, we find that users’ behavior history carries rich

information for inferring their “true” preference for diversity,

but has rarely been studied in existing work. A user’s behavior

history contains sequences of items that were positively inter-

acted with by the user (e.g., clicked, browsed, purchased), and

has been widely used for user modeling in recommendation

[17], [18]. Existing re-ranking models [3], [19], however,

generally transform users’ history into a fixed-length vector as

extra user features, unaware of the hidden diversity preference

for individual users. The behavior history over different topics

records users’ diverse needs, and suggests their personal

intents in different aspects. But how to effectively uncover

the correlation between the sequences of users’ behavior

history and the current ranking list for re-ranking remains

a challenging problem. For one thing, users’ behaviors for

different topics are mixed up in one long sequence, and is

difficult to directly extract useful information from it. For

another, users’ preferences for different topics are correlated,

and thus it is important to identify the inter-dependencies

between topics.

To address the above problems, we propose a new neural

re-ranking with personalized diversification method, RAPID.

The key idea lies in adaptively learning the user’s personal-

ized diversity interests from her behavior history sequences,

and providing diverse re-ranked lists catered to each user’s

tastes and preferences. In particular, we design a personalized

diversity estimator to capture the intra-topic and inter-topic

interactions from the user’s behavior history, and learn the

diversity gain for each item conforming to the user’s personal

interests. The listwise relevance estimator captures the cross-

item interactions between candidate items. The tradeoff be-

tween the personalized diversity and the relevance is automat-

ically optimized to generate the final re-ranking list. The main

contributions of this paper are summarized as follows:

• We propose to model the personalized diversity prefer-

ence via users’ behavior history in RAPID, and provide

diverse re-ranked lists catered to each user’s preferences.

Both intra- and inter-topic interactions are incorporated to

learn individual users’ preference distribution from their

behavior history. To the best of our knowledge, this is the

first work that automatically learns personalized diversity

preferences for the re-ranking stage.

• We jointly encode the item relevance and personalized

diversity for re-ranking, which enables automatic opti-

mization of the tradeoff between them. Hence RAPID is

aware of the diversity need for different recommendation

scenarios without manual intervention.

• We theoretically analyze the efficacy and efficiency of

RAPID. For efficacy, we show that the performance of

RAPID is guaranteed to produce a near-optimal recom-

mendation, with a Õ(
√
n) regret bound on utility. For

efficiency, we show that the computation cost of RAPID

suffices the response time requirement of large industrial

recommender systems.

Extensive experiments on both semi-synthetic datasets and a

real-world industrial dataset show that RAPID outperforms

the state-of-the-art re-ranking methods and yields the highest

utility and the best relevance-diversity tradeoff.

II. RELATED WORK

A. Relevance-oriented Re-ranking

Several existing studies have shown the effectiveness of

re-ranking for relevance by automatically modeling listwise

context/cross-item interactions with deep neural networks [1]–

[3], [5], [7], [19]–[22]. For example, DLCM [7] uses recur-

rent neural networks to sequentially encode the top-ranked

items with their feature vectors. Inspired by the transformer

architecture used in machine translation [23], PRM [2] ap-

plies the transformer to model the cross-item interactions.

Pang et al. [20] study the permutation-invariant property of

the self-attention blocks in re-ranking and propose SetRank.

SRGA [19] advances the attention structure by considering

the unidirectional browsing behavior and the local interaction

between neighboring items. Yet all of them focus on relevance

and overlook users’ demands for diversity.

B. Diversity-aware Re-ranking

To obtain diversified recommendation results, a series of re-

ranking models have been proposed [9]–[11], [13], [14], [24]–

[29]. An early example is the Maximum Marginal Relevance

(MMR) algorithm [24], [25], which diversifies the list by

greedily adding items with maximal marginal relevance. The

Determinantal Point Process (DPP) [10], [28] is recently

introduced to recommender systems by defining a probability

distribution over subsets of items. SSD [29] improves the di-

versity by maximizing the volume spanned by the constructed

trajectory tensor with sliding windows. As for neural methods,

NTN-DIV [14] proposes a neural tensor network to learn the

dissimilarity between any pairs of items. DSSA [13] estimates

the diversity with a recurrent network, and uses a weighted

combination of the relevance and diversity to produce the next



TABLE I: Notations and descriptions.

Notations Descriptions

u, U user u from the user set U
v, V item v from the item set V

xu/xv features for user/item
qu/qv dimension of user/item features
R initial ranking list, R(i) is the i-th item in the list
L length of the initial list
S re-ranked list
K length of the re-ranked list
m number of topics

c(G) topic coverage of a set/list G, cj(G) is its j-th element
T user’s behavior sequence
D maximum length of the user’s behavior sequences

ϕR re-ranking scores for list R, ϕR ∈ R
L

ϕ̄R underlying ground truth attraction probability for list R
ϕ̃ attraction probability estimated by DCM for click generation
³̃ relevance estimated by DCM for click generation
ϵ̃ termination probability estimated by DCM for click generation

item. DESA [9] captures item diversity and relevance with a

self-attention structure, and Le et al. [11] propose to maximize

a differentiable diversity-aware loss. However, existing studies

diversify the list equally for all users, and have not addressed

users’ personal preferences towards the diversity of items.

C. Personalized Diversification

Personalized diversification, taking advantage of both per-

sonalization and diversification, provides tailored diversity for

individual users. Early personalized diversification is heuristic

and computed according to specific statistics. Shi et al. [30]

use the variance of the latent user factors to indicate a user’s

demand for diversity. Wu et al. [31] find that the big-five

personality model (e.g., conscientiousness) is correlated with

users’ diversity needs and can be used to improve the diversity.

But it assumes the personality values of each user in terms of

the five personality dimensions (extraversion, agreeableness,

openness, conscientiousness, and neuroticism) are known,

which is hard to collect for most of today’s recommender

systems. Conducting surveys to obtain the personality values

requires extra responses from users beforehand and can cause

inconvenience to users. Noia et al. [32] compute the user’s

propensity toward diversity by the entropy over different

categories and the profile length. These methods are rule-

based and non-learnable, which may be biased to the manually

designed rules and lack generalization ability. PD-GAN [12],

proposes to learn a personalized DPP kernel matrix with

adversarial learning. However, PD-GAN is designed for the

ranking stage in recommendation, and ignores the complicated

cross-item interaction for relevance. Moreover, PD-GAN is a

two-stage model that first estimates relevance scores and then

diversifies the results. In this decoupled learning process of

diversity and relevance, the diversification signal cannot be

reflected in the relevance models, which results in suboptimal

recommendation. In this work, we jointly learn the relevance

and the personalized diversity scores, while modeling the

listwise cross-item interactions.

III. PROPOSED METHOD

In this section, we first give the problem formulation and an

overview of RAPID in Section III-A, followed by the detailed

description in Sections III-B to III-E.

A. Problem Formulation

The goal of re-ranking with personalized diversification is

to optimize the overall utility and generate re-ranked lists that

are both relevant and diverse according to users’ personal pref-

erences. Suppose we have a set of users U and a set of items

V , and items belong to a set of m topics J = {1, . . . ,m}.

Each item v ∈ V is associated with a topic coverage feature

τv ∈ R
m, with the j-th element τ jv ∈ [0, 1] denotes the

probability2 of item v covering topic j ∈ J . For a specific

user u ∈ U , given an initial ranking list Ru of L items, the

re-ranking model aims to learn a multivariate scoring function

F defined on Ru and output the re-ranking scores φRu
that

consider both relevance and diversity. The top-K items with

the highest re-ranking scores are selected as the re-ranked list

Su and finally displayed to the user, usually K ≤ L.

Formally, the input domain for the scoring function F is

Ω = {Ru, τRu
, Tu|u ∈ U}, where τRu

is the topic coverage

information of the initial list Ru (stacking all τv , v ∈ Ru)

and Tu is the behavior sequence for user u, then the scoring

function F : Ω → R
L is defined as

φRu
= F(Ru, τRu

, Tu) = g (fr(Ru, Tu), fd(τRu
, Tu)) , (1)

where φRu
represents the estimated utility, fr and fd are the

relevance function and the personalized diversity function, re-

spectively, and g is an aggregation function that combines the

estimated relevance and personalized diversity. In particular,

the diversity term fd is measured by the topic information τRu

and the personalized preferences that adaptively learned from

historical behaviors Tu, varying for different users. This is in

comparison to indiscriminately computing the diversity only

using τRu
as in [9], [13]. Table I shows the main notations

and their descriptions used in this paper. For simplicity, we

omit the subscript u from subsequent notations (e.g., φRu
to

φR), if not otherwise specified.

Overview. Figure 2 shows the overall framework of RAPID,

which is consist of a listwise relevance estimator, a per-

sonalized diversity estimator, and a re-ranker. The listwise

relevance estimator takes as input the user and item features

of the initial ranking list and estimates the listwise context.

The personalized diversity estimator extracts users’ individual

preference distribution over different topics from their behav-

ior history, and outputs the personalized diversity gain of the

candidate items by combining the topic coverage information

and the preference distribution. Finally, the estimated listwise

relevance and the personalized diversity of candidate items are

aggregated together by our proposed deterministic or proba-

bilistic approach to predict the re-ranking scores in the re-

ranker module. Therefore, the relevance and the personalized

2Here, we present the item coverage Ä jv in probability to be more general.

Usually, Ä jv ∈ {0, 1} is binary and indicates if item v belongs to topic j.
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Fig. 2: Overall framework of RAPID, which jointly estimates the listwise context and the personalized diversity. The purple

and blue arrows in the re-ranker module represent the deterministic and the probabilistic output approach, respectively.

diversity are jointly trained in an end-to-end manner. Details

of each component are elaborated on in the following sections.

B. Listwise Relevance

The relevance of an item is not independent, rather it is

affected by other items placed in the same list. For example,

placing complementary products in one list, like a phone and

a phone case, usually receives higher total attention [33].

Re-ranking is designed to model such cross-item interac-

tions/listwise context [5]. In particular, the user’s interests in

the current item are influenced by items ranked both before

and after it. Therefore, we adopt a bidirectional LSTM (Bi-

LSTM) [34] to bidirectionally exploit such listwise context

and the sequential dependencies. Bi-LSTM has exhibited

great effectiveness in modeling the two-way long short-term

dependencies of a list [35].

Let R(i) denote the i-th item in the initial ranking list R, i =
1, . . . , L. Each item R(i) is represented by a concatenation of

the user feature xu, the item feature xR(i), and the topic cover-

age feature ÄR(i), i.e., eR(i) = [xu, xR(i), ÄR(i)] ∈ R
qu+qv+m.

Then the forward output state h⃗R(i) = LSTM(eR(i), hR(i−1))
of the i-th item can be acquired by an LSTM cell [36].

Similarly, we can obtain the backward output state ⃗hR(i) =
LSTM(eR(i), hR(i+1)). Then the final relevance representation

hR(i) for item i is a concatenation of the forward and the

backward output states hR(i) = [⃗hR(i), ⃗hR(i)] ∈ R
2qh , where

qh is the hidden size. As such, RAPID is capable of modeling

the relationship between each candidate item and each topic

in the initial ranking list for a user. Note that the Bi-LSTM

could be replaced by other deep architectures like transformer

[2] to model the cross-item interactions. Here, we adopt Bi-

LSTM due to its simplicity and relatively superior performance

compared to transformer in our experiments (Section IV-E2).

C. Personalized Diversity

Personalized diversification tailors how to diversify the re-

ranking list for each user, as different users may have different

preferences for diversity. Some users may prefer a diverse

recommendation result; some may be inclined to only diversify

for specific topics; while others may be only willing to

receive focused recommendation. Providing diverse re-ranked

lists catered to each user’s tastes fulfills the user’s multi-

faceted interests, thereby could jointly improve the relevance

and the diversity. Moreover, the user’s history contains rich

personalized behavioral characteristics and intents, which is

critically important for modeling user interests and diversity

preferences. Existing diversity-aware work, however, generally

diversifies the recommendation lists uniformly and fails to

extract the topic-level fine-grained preferences from the user’s

history [9], [13]. In RAPID, we first learn the preference dis-

tribution over different topics from the user’s history behavior

sequences, and then design a user-specific diversity represen-

tation of each candidate item with personalized diversity gain

to facilitate diverse recommendation.

Since items from different topics are mixed up in users’

behavior history, we split the whole long sequence of history

and construct separate behavior sequences for every topic

T1, . . . , Tm to better model the user’s preferences, as shown in

Figure 2. Each topical behavior sequence Tj containing items

favored by the current user belonging to topic j ∈ J , sorted

by time. Whether an item belongs to a topic can be sampled

according to its given topic coverage. Let D be the maximum

length of the behavior sequences. We incorporate LSTM to

explicitly encode time dependencies of user behaviors within

each topic to model the intra-topic interactions. Let Tj(i)
be the i-th item in sequence Tj . Then the output states are

derived by zj,i = LSTM([xu, xTj(i)], zj,i−1), which take as

input the concatenated user and item features [xu, xTj(i)] and

the previous states.

The final output state of LSTM can be viewed as an

encoding of all the information contained in the sequence, and

has the greatest impact on future predictions. Thus we take the

final output states as the representation vector for each topic j,

i.e., tj = zj,D. The topic representation vector tj summarizes

the user’s interests in topic j, which is personalized and

beneficial for the final re-ranking.

After encoding users’ behavioral patterns separately for

each topic, we aggregate topic-specific signals to obtain the

preference distribution over topics by self-attention mechanism

[23]. The self-attention mechanism is used for capturing



the relationship and correlations between different topics—

the inter-topic interactions. We stack all topic representation

vectors tj , j = 1, . . . ,m and obtain a matrix V ∈ R
m×qh with

qh as the hidden size. The self-attention is defined by

A = Attention(V ) = softmax

(

V V ¦

√
qh

)

V , (2)

where A ∈ R
m×qh is the attended matrix, and

√
qh is used to

stabilize gradients during training. We denote the j-th row

of A as aj , and further feed concatenated [a1, . . . , am] to

a multi-layer perceptron (MLP) by non-linearly mapping the

attended vectors into an m-dimensional space to generate the

personalized preference distribution ¹̂ ∈ R
m over topics,

¹̂ = MLPθ[a1, . . . , am] , (3)

where ¹̂ describes how likely a user is interested in each topic.

Moreover, given the initial ranking list R, the diversity of

an item is not independent, but relies on the dissimilarity or

novelty between the current item and other items in R. In this

paper, we use the probabilistic coverage function c(·) as the

diversity function, which is a commonly adopted submodular

function for recommendation diversity [26], [37]–[39],

cj(R) = 1−
∏

v∈R
(1− Ä jv ) , (4)

where Ä jv is the item’s topic coverage, and cj(R) describes the

probability of at least one item in R covers topic j. Notice that

the probabilistic coverage function can be replaced by other

submodular diversity functions according to the objective of

the recommendation scenario.

Furthermore, we define the marginal diversity of an item

R(i) as the difference in diversity with and without R(i)
appearing in the list,

dR(R(i)) = c(R)− c(R/{R(i)}) , (5)

where dR(R(i)) ∈ [0, 1]
m

, R/{R(i)} refers to the remained

list with R(i) removed. The quantity in Eq.(5) indicates the

dissimilarity between R(i) and all the other candidate items in

R. Clearly, if an item is similar to other candidate items or its

characteristics have already been covered by the combination

of other items in the list, adding it to the list will bring about

little improvement in list diversity.

Building upon the previous discussion, we can attain the di-

versity representation vector ∆R(R(i)) of each item R(i), i =
1, . . . , L from the initial ranking list R,

∆R(R(i)) = ¹̂ » dR(R(i)) , (6)

where » is the element-wise product. Hence, the j-th element

of ∆R(R(i)) represents the personalized diversity gain of item

R(i) in topic j, weighted by the user preference for topic j.

Intuitively, if item R(i) is more diverse over other items placed

in the list and belongs to the user’s interested topic, then that

item is likely to attract the user and gain more diversity. For

example, suppose we have three topics, the current list has

already covered topic 1, and the user is also interested in topic

2 but not topic 3, then an item covering topic 2 will bring larger

diversity gain to the list compared to the item in topic 3.

D. Re-ranking

To provide the final re-ranking scores, rather than explicitly

balance relevance and diversity with a hyper-parameter to be

tuned, we let the model automatically fuse the relevance and

diversity signals with an MLP. This is in contrast to existing

learning methods [11], [29] that require extra manual work

of parameter tuning or optimal list construction. To this end,

our proposed RAPID is more flexible and can easily adapt to

different recommendation scenarios without the heavy burden

of manually managing the tradeoff.

We stack the relevance representation vectors hR(i), i =
1, . . . , L into a matrix HR ∈ R

L×2qh , and the diversity

representation vectors ∆R(R(i)), i = 1, . . . , L into a matrix

∆R ∈ R
L×m. Here, we present two output approaches, a

deterministic and a probabilistic approach, to produce the final

re-ranking scores.

1) Deterministic Approach: We concatenate the relevance

matrix and the diversity matrix, and then use an MLP for

fusing the relevance and diversity to predict the scores,

ϕR = MLPφ[HR,∆R] , (7)

where ϕR ∈ R
L, and ϕR(R(i)), the i-th element of ϕR, is

the probability that item R(i) attracts the user, depending on

the relevance and the diversity of the whole list. Finally, we

sort the list by ϕR(R(i)), and select the top-K items as the

re-ranked list S for the user.

2) Probabilistic Approach: Inspired by the contextual ban-

dit algorithms like LinUCB [40], [41], we further extend the

deterministic approach and propose a probabilistic solution by

involving exploration and randomization for diverse results.

Specifically, since stochastic sampling is non-differentiable,

we adopt the reparameterization trick from the variational

auto-encoder (VAE) [42] to make the back-propagation fea-

sible. We separately estimate a mean and a standard deviation

for the re-ranking score of each item,

φR = MLPϕ[HR,∆R] , ΣR = MLPΣ[HR,∆R] , (8)

where φR ∈ R
L, ΣR ∈ R

L, and the i-th element denotes the

mean and the standard deviation of the re-ranking score for

the i-th item R(i), i = 1, . . . , L. In training, we transform the

stochastic sampling into the following Eq.(9) by incorporating

a standard normal random variable,

ϕR(R(i)) = φR(i) + ÀR(i)ΣR(i) , ÀR(i) ∼ N (0, 1) , (9)

where φR(i) and ΣR(i) are trained via back-propagation. While

at inference time, we use the upper confidence bound (φR(i)+
ΣR(i)) of the re-ranking score for item R(i) to perform re-

ranking,

UR(R(i)) = φR(i) +ΣR(i) . (10)

The standard deviation ΣR(i) describes how confident the

model is in the current estimated re-ranking scores and would

like to encourage exploration, which is also user-specific.

Likewise, we obtain the re-ranked list by selecting the top-K
items sorted by the upper confidence bound of the re-ranking

scores UR(R(i)) to maximize the user’s satisfaction.



E. Optimization

We minimize the cross entropy loss to push the model to

score satisfactory items higher than unsatisfactory ones,

L = −

n∑

l=1

L∑

i=1

{yRl(i)
log(φRl

(Rl(i)))+(1−yRl(i)
) log(1−φRl

(Rl(i)))},

(11)

where yRl(i) ∈ {0, 1} is the click indicator for the i-th item

from list Rl with 1 denoting user clicks or conversions, and 0
denoting non-click, n is total number of user requests in the

training set. To this end, the tradeoff between relevance and

diversity can be jointly learned by RAPID in an end-to-end

manner directly from user feedback.

IV. EXPERIMENTS

Next, we empirically study the performance of RAPID

towards answering the following research questions (RQs).

• (RQ1) How does RAPID perform compared with the

state-of-the-art re-ranking models in terms of utility and

diversity under various recommendation scenarios?

• (RQ2) How well does RAPID perform with different

initial rankers?

• (RQ3) How does each designed component influence the

performance of RAPID?

• (RQ4) How do the hyper-parameters (hidden size, max-

imum length of the behavior sequences) influence the

performance of RAPID?

• (RQ5) How well does RAPID model personalized pref-

erence on diversity?

We first conduct semi-synthetic experiments on public

datasets Taobao and MovieLens-20M. The semi-synthetic

setup with a click model as the environment is widely applied

[43], [44], which allows us to explore different settings and

validate the advantage of our proposed model. The usage of the

click model considers the possible position bias or selection

bias in user behaviors, and could provide unbiased evaluation.

We further conduct experiments on Huawei App Store dataset

with real initial ranking lists and the corresponding clicks to

highlight the effectiveness of RAPID in real-world applica-

tions.

A. Dataset Description

To evaluate the effectiveness of RAPID, we conduct exper-

iments on two public datasets Taobao and MovieLens-20M,

and an industrial dataset App Store.

1) Taobao: Taobao dataset3 contains user purchase behav-

iors from Taobao, one of the biggest e-commerce platforms in

China, with 987,994 users, 4,162,042 items, and 100,150,807

interactions, from November 25 to December 3, 2017. Data

from the 1-2 days, 3-5 days, 6-8 days, and the last day are

divided as user behavior history, initial ranker training set, re-

ranking training set, and test set respectively. As the dataset

contains 9,439 categories, we use Gaussian Mixture Models

(GMMs) to cluster items into 5 topics as the item’s topic

coverage Ä .

3https://tianchi.aliyun.com/dataset/dataDetail?dataId=649

2) MovieLens-20M: MovieLens-20M dataset4 contains

20,000,263 movie ratings between January 09, 1995, and

March 31, 2015. We randomly divide the interactions into user

behavior history, initial ranker training set, re-ranking training

set, and test set in the ratio of 2:3:4:1 for each user, due to

the long time span of the dataset. Given that all movies in

MovieLens-20M belong to 20 genres, we use the normalized

multi-hot genre vector as the item’s topic coverage Ä .

3) App Store: App Store dataset is collected from Huawei

App Store, from June 1, 2022 to June 30, 2022, with

202,348,110 requests and 3,249 apps. Each app belongs to one

of 23 different categories, so that the item’s topic converge Ä
is a one-hot vector for the App Store dataset. The first 29 days

are the training set, while the last day is the test set. The user

behavior history is collected in real-time.

Notice that for Taobao and MovieLens, datasets are split

into user behavior history, initial ranker training set, re-ranking

training set, and test set. The initial ranker is trained on its

initial ranker training set and provides initial ranking lists with

predicted scores on the other data sets for training and testing

the re-ranking models. Re-ranking models that consider the

user behavior history like RAPID are trained on the re-ranking

training set with user behavior history set as side information.

Particular models that do not employ user behavior history

are trained on the combined set of the re-ranking training data

and the user behavior history data for fair comparison. All the

models are tested on the same test set.

B. Experimental Settings

1) Click Feedback for Taobao & MovieLens: Taobao &

MovieLens datasets do not have session and position infor-

mation, so that cannot be directly adopted for re-ranking. To

generate the corresponding click feedback for training and

evaluation of the re-ranking models on these datasets, we

involve a dependent click model (DCM) to simulate user

clicks. DCM provides unbiased evaluation for a given list

by considering multiple clicks and the dependencies between

items, and is widely used for click simulation [43], [45]–[47].

In DCM, for each item vk in list S at position k, the

user is attracted and clicks on the item with an attraction

probability ϕ̄(vk). After the click, she may be satisfied and

leave with a termination probability ϵ̄(k). If there is no click,

the user will continue examining the next position. We follow

the assumption in [37], [38], where the attraction probability is

a combination of the item relevance and diversity, i.e., ϕ̃(vk) =
¼³̃(vk) + (1− ¼)Ä̃¦·(vk), where ¼ is a hyper-parameter that

measures the tradeoff between the item relevance ³̃(vk) and

diversity Ä̃¦·(vk), ·(vk) is the coverage difference of item vk
compared to previously selected items, and Ä̃ is the weight

parameter for each user. The parameters of DCM, i.e., ³̃, Ä̃,

and ϵ̃, are estimated by maximizing the log-likelihood from

the click logs follows [38], [45].

2) Evaluation Metrics: All re-ranking models are evaluated

by commonly used utility and diversity metrics, where the

utility is measured by the listwise total number of clicks

4https://grouplens.org/datasets/movielens/20m/

https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
https://grouplens.org/datasets/movielens/20m/


TABLE II: Overall performance on public datasets.

(a) λ = 0.5

Taobao MovieLens-20M

click@5 ndcg@5 div@5 satis@5 click@10 ndcg@10 div@10 satis@10 click@5 ndcg@5 div@5 satis@5 click@10 ndcg@10 div@10 satis@10

Init 1.2358 0.3924 3.0807 0.2215 1.8793 0.4833 4.2193 0.1664 1.8412 0.4936 5.6425 0.3190 2.3379 0.5383 7.1999 0.2743

DLCM 1.7271 0.4742 3.2389 0.2972 2.3944 0.5788 4.3222 0.2043 2.0877 0.5406 6.4529 0.3543 2.6476 0.5892 8.0529 0.3048
PRM 1.7900 0.4828 3.1775 0.3064 2.4485 0.5876 4.2697 0.2079 2.0911 0.5267 6.2818 0.3550 2.6560 0.5775 7.8888 0.3057

SetRank 1.6935 0.4553 3.1826 0.2925 2.2972 0.5629 4.2621 0.1963 2.0630 0.5185 6.2412 0.3511 2.6291 0.5692 7.8875 0.3032
SRGA 1.7801 0.5013 3.1874 0.3052 2.4890 0.6109 4.2915 0.2117 2.0814 0.5228 6.3382 0.3536 2.6448 0.5737 7.9638 0.3046

MMR 1.2560 0.4100 3.2464 0.2247 1.8938 0.5048 4.2611 0.1674 1.8575 0.4857 5.8207 0.3214 2.3455 0.5280 7.3301 0.2750
DPP 1.3326 0.4259 4.1645 0.2377 1.8732 0.5023 4.5851 0.1645 1.9458 0.5065 6.4568 0.3342 2.4378 0.5480 8.3408 0.2846

DESA 1.7479 0.4745 3.1903 0.3002 2.4121 0.5794 4.2841 0.2055 2.0707 0.5253 6.2853 0.3521 2.6374 0.5754 7.9044 0.3039
SSD 1.1988 0.3296 3.1513 0.2156 1.8433 0.4214 4.2822 0.1638 1.8135 0.3888 5.7663 0.3151 2.3127 0.4397 7.3705 0.2717

adpMMR 1.2408 0.3962 3.1179 0.2221 1.8802 0.4852 4.2471 0.1663 1.844 0.4924 5.6663 0.3194 2.3385 0.5358 7.2139 0.2744
PD-GAN 1.2478 0.4072 3.1092 0.2235 1.8919 0.5009 4.3134 0.1674 1.8601 0.4901 5.9314 0.3287 2.6307 0.5640 8.0515 0.2806

RAPID-det 1.8323 0.5082 3.2356 0.3134 2.5551∗ 0.6214∗ 4.327 0.2167∗ 2.0981 0.5423 6.4644 0.3558 2.6591 0.5899 8.0709 0.3059
RAPID-pro 1.8358∗ 0.5102∗ 3.2265 0.3135∗ 2.5110 0.6149 4.3130 0.2127 2.1071∗ 0.5442∗ 6.5210∗ 0.3570∗ 2.6648∗ 0.5928∗ 8.1261 0.3064∗

(b) λ = 0.9

Taobao MovieLens-20M

click@5 ndcg@5 div@5 satis@5 click@10 ndcg@10 div@10 satis@10 click@5 ndcg@5 div@5 satis@5 click@10 ndcg@10 div@10 satis@10

Init 1.2648 0.3248 3.0807 0.2256 2.1741 0.4254 4.2193 0.1928 1.7972 0.4067 5.6412 0.3103 2.4889 0.4418 7.1997 0.2871

DLCM 2.5170 0.6640 3.1926 0.4048 3.4267 0.7557 4.2718 0.2774 2.2393 0.4871 5.8975 0.3736 3.0700 0.5324 7.5226 0.3428
PRM 2.5965 0.6918 3.1957 0.4147 3.4878 0.7798 4.2704 0.2809 2.2408 0.4874 5.8957 0.3737 3.0715 0.5325 7.5191 0.3430

SetRank 2.3785 0.6152 3.1870 0.3893 3.3416 0.7159 4.2706 0.2731 2.2401 0.4820 5.8967 0.3738 3.0700 0.5273 7.5221 0.3428
SRGA 2.5803 0.6949 3.1925 0.4132 3.5103 0.7873 4.2719 0.2831 2.2425 0.4856 5.8992 0.3740 3.0716 0.5304 7.5195 0.3429

MMR 1.2636 0.3264 3.2439 0.2256 2.1824 0.4302 4.2708 0.1937 1.8005 0.4060 5.7282 0.3108 2.4905 0.4415 7.2514 0.2873
DPP 1.2109 0.3188 4.1641 0.2174 2.0838 0.4164 4.5847 0.1858 1.8077 0.4052 6.4558 0.3119 2.4959 0.4406 8.3398 0.2879

DESA 2.5292 0.6732 3.1915 0.4060 3.4341 0.7636 4.2724 0.2778 1.9935 0.4357 5.9985 0.3391 2.7671 0.4775 7.6097 0.3144
SSD 1.2174 0.3059 3.1434 0.2183 2.1156 0.4071 4.2766 0.1887 1.6715 0.3544 5.6804 0.2915 2.3710 0.3954 7.2746 0.2750

adpMMR 1.2649 0.3255 3.1179 0.2256 2.1739 0.4261 4.2271 0.1928 1.7982 0.4053 5.6663 0.3105 2.4887 0.4409 7.2139 0.2871
PD-GAN 1.2814 0.3338 3.0978 0.2280 2.2038 0.4350 4.3162 0.1953 1.8090 0.4098 5.6617 0.3121 3.0015 0.4792 8.2334 0.2743

RAPID-det 2.6571 0.7077 3.1899 0.4227 3.5668 0.7969 4.2726 0.2862∗ 2.2433 0.4878 5.9062 0.3741 3.0752 0.5336 7.5222 0.3431
RAPID-pro 2.6575∗ 0.7084∗ 3.1966 0.4228∗ 3.5680∗ 0.7976∗ 4.2770 0.2862∗ 2.2457 0.4882 5.9103 0.3745∗ 3.0761∗ 0.5332 7.5240 0.3432∗

(c) λ = 1.0

Taobao MovieLens-20M

click@5 ndcg@5 div@5 satis@5 click@10 ndcg@10 div@10 satis@10 click@5 ndcg@5 div@5 satis@5 click@10 ndcg@10 div@10 satis@10

Init 1.2721 0.3132 3.0807 0.2267 2.2478 0.4156 4.2193 0.1993 1.7862 0.3897 5.6412 0.3085 2.5265 0.4244 7.1992 0.2905

DLCM 2.7192 0.7237 3.1921 0.4298 3.6927 0.8081 4.2698 0.2950 2.2833 0.5006 5.7944 0.3797 3.1765 0.5410 7.4217 0.3524
PRM 2.7903 0.7483 3.1932 0.4381 3.7401 0.8289 4.2694 0.2975 2.2828 0.5008 5.8059 0.3797 3.1759 0.5417 7.4360 0.3524

SetRank 2.5298 0.6449 3.1922 0.4100 3.6154 0.7465 4.2759 0.2925 2.2821 0.4981 5.8082 0.3793 3.1762 0.5396 7.4277 0.3522
SRGA 2.7713 0.7466 3.1924 0.4366 3.7669 0.8330 4.2723 0.3000 2.2831 0.5010 5.8046 0.3794 3.1761 0.5423 7.4262 0.3522

MMR 1.2635 0.3127 3.2440 0.2256 2.2521 0.4172 4.2708 0.2000 1.7862 0.3902 5.6414 0.3085 2.5266 0.4248 7.1996 0.2905
DPP 1.1792 0.2990 4.1639 0.2121 2.1347 0.4022 4.5848 0.1909 1.7733 0.3890 6.4559 0.3067 2.5109 0.4228 8.3403 0.2890

DESA 2.7908 0.7471 3.1963 0.4382 3.7406 0.8282 4.2730 0.2976 2.0387 0.4423 5.8634 0.3454 2.8748 0.4823 7.4509 0.3243
SSD 1.2284 0.3098 3.1487 0.2199 2.1909 0.4106 4.2786 0.1954 1.6794 0.3641 5.7220 0.2924 2.4268 0.4003 7.3414 0.2803

adpMMR 1.2709 0.3142 3.1179 0.2265 2.2473 0.4156 4.2271 0.1993 1.7867 0.3895 5.6663 0.3086 2.5262 0.4252 7.2139 0.2905
PD-GAN 1.2815 0.3262 3.1017 0.2284 2.2358 0.4239 4.3338 0.1981 1.8004 0.3974 5.6305 0.3106 3.0967 0.4635 8.2268 0.2810

RAPID-det 2.8209 0.7580 3.1945 0.4429 3.8455∗ 0.8474 4.2723 0.3053∗ 2.2872 0.5021 5.8049 0.3799 3.1822 0.5425 7.4341 0.3525
RAPID-pro 2.8579∗ 0.7652∗ 3.1973 0.4470∗ 3.8338 0.8475∗ 4.2743 0.3036 2.2878∗ 0.5027 5.8101 0.3800∗ 3.1822∗ 0.5436 7.4384 0.3526∗

∗ denotes statistically significant improvement (measured by t-test with p-value<0.05) over all baselines.

click@k, the popular learning-to-rank metric ndcg@k [48],

the overall user satisfaction satis@k, and the total amount of

income for the platform rev@k, while the diversity is measured

by the topic coverage div@k. The click@k and rev@k are the

major concerns for industrial recommender systems [44]. For

all the below metrics, we report k = 5, 10.

Click@k. The total number of clicks is defined by click@k =
1
n

∑n
l=1

∑k
i=1 yl(vi), where yl(vi) ∈ {0, 1} denotes the click

of the i-th item for request l.

Satis@k. For Taobao and MovieLens-20M, the average

user satisfaction [46], [47], given by DCM, is defined by

satis@k = 1 − 1
n

∑n
l=1

∏k
i=1

(

1− ϵ̃l(i)ϕ̃l(vi)
)

, where ϵ̃l(i)

and ϕ̃l(vi) are termination probability at position k and the

attraction probability of item vi for request l, respectively.

Rev@k. For App Store dataset, since the evaluation does not

depend on the click model and the objective of the platform

is to optimize the total revenue, we choose rev@k as the main

utility metric, defined by rev@k = 1
n

∑n
l=1

∑k
i=1 bl(vi)yl(vi),

where bl(vi) is the given bid price of item vi for request l.

Div@k. The topic coverage div@k denotes the expected num-

ber of covered topics for the top-k items, which is widely

adopted in existing studies [37], [39], [49], [50], i.e., div@k =
1
n

∑n
l=1

∑

j cl,j(S1:k), where n is the total number of requests,

and cl,j(S1:k) is the coverage of topic j for the top-k items



in the re-ranked list S1:k for request l.
3) Initial Rankers and Baselines: We select three widely

adopted ranking algorithms, including the representative deep

ranking model DIN [51], SVMRank [52], and LambdaMART

[53], to generate the initial ranking lists, which use pointwise,

pairwise, and listwise loss, respectively.

To demonstrate the effectiveness, we compare the proposed

RAPID with the following state-of-the-art re-ranking mod-

els, including relevance-oriented re-ranking models (DLCM,

PRM, SetRank, and SRGA), diversity-aware re-ranking mod-

els (MMR, DPP, DESA, and SSD), and personalized diversity

models (adpMMR and PD-GAN)5:

DLCM [7] is the re-ranking model that first applies GRU,

which encodes top-ranking items to learn a local context

embedding. PRM [2] employs a self-attention mechanism to

explicitly model the cross-item interactions. SetRank [20]

adopts a stack of (induced) multi-head self-attention blocks

to learn a permutation-invariant ranking model. SRGA [19]

improves the attention structure by considering the impact of

unidirectivity and locality. MMR [24] diversifies the initial

ranking lists by greedily adding items with maximal marginal

relevance. DPP [10], [28] uses Determinantal Point Process to

generate relevant and diverse recommendations. DESA [9] is

a state-of-the-art diversity-aware method that jointly estimates

diversity and relevance with a self-attention structure and a

pairwise loss. SSD [29] improves the diversity by maximizing

the volume spanned by the constructed trajectory tensor with

sliding windows. AdpMMR [32] is a personalized diversity

model that computes users’ propensity toward diversity by

feature entropy. PD-GAN [12] is a personalized diversity

model with a personalized DPP kernel matrix designed for

the ranking stage.

C. Reproducibility

The implementation of our model is publicly available6.

We adopt Adam [54] as the optimizer. The maximum length

of user behavior sequences for each topic is set to 5, and

the maximum length of the initial list is set to 20. The

learning rate is selected from {10−5, 10−4, 10−3, 10−2}, the

batch size from {256, 512, 1024}, and the hidden size from

{8, 16, 32, 64} with grid search. To ensure fair comparison, we

also fine-tune all baselines to achieve their best performance.

D. (RQ1) Overall Performance

We compare RAPID with several state-of-the-art baselines,

on two public benchmark datasets and an industrial dataset.

RAPID with deterministic approach and probabilistic approach

are denoted by RAPID-det and RAPID-pro, respectively.

5We did not include the results of the personalized diversity method LPF
[30], because with careful parameter tuning, the utility metrics are still notably
worse than the initial ranking. Possible reasons are (i) The matrix factorization
model that LPF based on is limited when the dataset is extremely sparse such
as Taobao or MovieLens-20M, and does not integrate the content features. If
the quality of latent factors is inferior, the estimated utility may be imprecise.
(ii) LFP is a two-phase model, the optimization directions of the two phases
may not be consistent. We did not compare PS [31] in our experiments since
the personality values are unobtainable for the datasets.

6Our code is available at https://github.com/wwliu555/RAPID

1) Benchmark Datasets: To study the performance of the

re-ranking models under different recommendation scenarios,

we set the relevance-diversity tradeoff parameter ¼ of the click

model to 0.5, 0.9, and 1.0, where the importance of diversity in

motivating clicks decreases accordingly. The setting ¼ = 0.5
indicates relevance and diversity are roughly of the same

importance, like news feed recommendation scenario [55],

[56] where user clicks also depend a lot on diversity. For

¼ = 1, it represents the scenario that user clicks are simply

motivated by relevance, like ads recommendation [57]. We

select the deep ranking model DIN as our initial ranker.

The overall performance on Taobao and MovieLens-20M is

reported in Table II, from which we have several observations.

First, the initial rankers usually do not perform well in both

utility and diversity compared to the performance of the re-

ranking models. As suggested in Table II, we observe that

the initial ranker (Init) has the lowest utility and diversity.

All purely relevance-oriented re-ranking models (including

DLCM, PRM, SetRank, and SRGA) improve the initial ranker

in both utility and diversity by a large margin, due to the

incorporation of the listwise context. In general, PRM and

SRGA perform best amongst all the baselines, but the results

of SRGA vary under different settings and are not as good

on the later industrial dataset. Whereas diversity-aware re-

ranking models usually have a great improvement in diversity,

the increase in utility is only marginal. DESA generally can

achieve better diversity and utility, but its performance is not

so stable under different settings. Although adpMMR and PD-

GAN consider the personalized diversity, their performance

gain in utility over the initial ranker is not so significant.

It is because adpMMR simply employs the entropy of user

features to determine the degree of diversity, which is rule-

based and non-learnable. As for PD-GAN, the personalized

diversity is described by the number of topics favored by

the user in PD-GAN, which has limited expressive power.

Moreover, PD-GAN is designed for the ranking stage and

estimates the relevance for each candidate item independently,

ignoring the listwise context.

Second, the relevance-diversity tradeoff exists widely. Con-

sidering the diversity-aware models like DPP, though they

achieve higher diversity than the initial ranker, the utility-

based metrics are much inferior to the relevance-oriented

models. The concepts of relevance and diversity are inherently

conflicting to some extent. To obtain ideal diversity, one could

simply divide the recommendation equally for each topic.

Contrastingly, the main goal of learning relevance is to break

the equality and model users’ personalized tastes over different

topics. DPP is specially designed to promote diversity by

selecting the most dissimilar subset of the candidate items, but

is at a great sacrifice of relevance. In particular, DPP attains the

largest diversity at a decrease of 37.8% in click@5 on Taobao

for ¼ = 0.5 compared to RAPID-pro, which is undesirable.

RAPID, however, is not designed to only maximize diversity,

but to optimize the overall utility by diversifying the results

according to individual user’s preference.

Third, RAPID outperforms relevance-oriented re-ranking



TABLE III: Overall performance on App Store dataset.

click@5 ndcg@5 div@5 rev@5 click@10 ndcg@10 div@10 rev@10

Init 0.8618 0.4353 3.4678 3.8806 0.9981 0.4733 4.3987 4.5659

DLCM 0.9055 0.5871 3.5111 4.4447 1.0357 0.6238 4.4112 4.9221
PRM 0.9561 0.6258 3.4469 4.4897 1.0539 0.6528 4.3989 4.9379

SetRank 0.9364 0.6040 3.5299 4.4809 1.0424 0.6336 4.4110 4.9377
SRGA 0.9133 0.6058 3.4502 4.4229 1.0399 0.6492 4.3907 4.8968

MMR 0.9177 0.5555 3.4446 4.2867 1.0571 0.6297 4.3813 4.5387
DPP 0.8959 0.5290 3.8925 4.0006 0.9916 0.6026 4.5752 4.4658

DESA 0.9320 0.6035 3.5558 4.4608 1.0378 0.6331 4.4057 4.9177
SSD 0.9071 0.5565 3.4569 4.4048 1.0275 0.6110 4.4034 4.5857

adpMMR 0.9284 0.5357 3.4626 4.3621 1.0496 0.6134 4.3876 4.5659
PD-GAN 0.9081 0.5837 3.4632 4.3810 1.0336 0.6297 4.4048 4.5764

RAPID-det 0.9860 0.6595 3.6481 4.5501 1.0700 0.6585 4.4692 4.9746
RAPID-pro 1.0002∗ 0.6693∗ 3.6509 4.5523∗ 1.0786∗ 0.6825∗ 4.4858 4.9909∗

impv% 4.61% 6.95% 5.92% 2.06% 2.34% 4.55% 1.98% 1.07%

∗ denotes statistically significant improvement (p-value<0.05) over PRM,
which achieves the highest rev@k among baselines.

models in different metrics under different settings. The results

in Table II show that RAPID performs significantly better

than other baselines. Compared to the relevance-oriented re-

ranking models, RAPID consistently yields better performance

w.r.t. both utility and diversity metrics under all settings. For

instance, RAPID-pro surpasses PRM by 2.55% in click@10

and 1.01% in div@10 on Taobao, and 0.33% in click@10 and

3.01% in div@10 on MovieLens-20M at ¼ = 0.5. We attribute

this improvement to RAPID automatically extracting users’

personalized diversity preferences from their behavior history,

and performing re-ranking with customized diversification. As

such, for one thing, the relevance-based metrics are enhanced

by providing more diverse options that fit the user’s interests

instead of duplicate items, where the user usually clicks at

most one of them. For another, different users have different

intents for diversity, providing diverse items for users with

diverse interests improves the overall diversity metrics. More-

over, RAPID intelligently learns to fuse relevance and diversity

in an end-to-end manner. When we increase ¼ from 0.5 to 1,

RAPID is capable of automatically putting less emphasis on

diversity in general, e.g., the improvements of RAPID-pro in

div@10 on Taobao over PRM are reduced from 1.01%, 0.15%,

to 0.11%, and improvements in click@10 are relatively stable,

i.e., 2.55%, 2.30%, 2.51%, showing that RAPID can well

adapt to different recommendation scenarios and generate the

most satisfactory re-ranking results. Furthermore, considering

the different output approaches, RAPID-pro generally achieves

better results than RAPID-det due to the benefit of encouraging

exploration in re-ranking.

2) Industrial Datasets: We further test RAPID on Huawei

App Store and evaluate RAPID directly by real-world click-

through data, without the click model. The objective of the

App Store is to maximize the total revenue. Table III presents

the results of RAPID and the state-of-the-art baselines. The

initial ranking list (Init) is generated by the App Store’s

ranking strategy currently running on the platform. Similar

observations as on the public datasets can be observed for the

App Store dataset. The relevance-oriented re-ranking models

offer better re-ranked performance in both utility and diver-

sity compared to the initial ranking list. The diversity-aware

models like DPP exhibit a great rise in diversity, yet with a

TABLE IV: Comparison on different initial ranking lists.

SVMRank LambdaMart
Taobao MovieLens-20M Taobao MovieLens-20M

click@10 div@10 click@10 div@10 click@10 div@10 click@10 div@10

Init 2.0854 4.2271 2.0423 6.6047 2.0446 4.1870 2.0892 6.4269

DLCM 3.5474 4.2596 2.8468 6.7615 3.6150 4.2597 2.8548 7.0649
PRM 3.6053 4.2630 2.8481 6.7952 3.6200 4.2515 2.8566 7.0706

SetRank 3.4469 4.2561 2.8478 6.7670 3.4261 4.2629 2.8550 7.0629
SRGA 3.6326 4.2624 2.8490 6.7790 3.6380 4.2555 2.8569 7.0701

MMR 2.1009 4.2289 2.0427 6.6171 2.0578 4.1863 2.0893 6.4287
DPP 2.1979 4.6167 2.1547 7.3142 2.1234 4.6654 2.2806 7.8096

DESA 3.5519 4.2607 2.7641 6.8276 3.1601 4.2660 2.5849 7.1403
SSD 2.0692 4.2499 2.0204 6.6532 2.0954 4.3065 2.0631 6.7209

adpMMR 2.0954 4.228 2.0436 6.6072 2.0546 4.1873 2.0893 6.4272
PD-GAN 2.0993 4.3272 2.5034 7.5758 2.1054 4.2778 2.5861 7.4944

RAPID-det 3.7049 4.2584 2.8504 6.7719 3.7113 4.2583 2.8598 7.0788
RAPID-pro 3.6791 4.2656 2.8522 6.8051 3.7118 4.2613 2.8613 7.0891

large fall in utility. In particular, RAPID attains a better perfor-

mance under various metrics. RAPID improves the strongest

baseline PRM by 2.06% in rev@5 and 1.07% in rev@10,

while in the meantime providing a more diverse re-ranking

result (improved by 5.92% and 1.98% in div@5 and div@10,

respectively). Such an improvement in rev@k corresponds

to a significant increase in income for the platform. This is

because RAPID captures users’ personalized preferences over

all topics by modeling the intra- and inter-topic interactions

from the users’ behavior history, which benefits the re-ranking

performance. In addition, RAPID directly estimates the rel-

evance and the diversity from user clicks in a unified end-

to-end framework so that is capable of jointly learning the

combination of relevance and diversity, instead of explicitly

enforcing diversity by the tradeoff parameter. Since RAPID-

pro generates better results in general, in the hereafter, we

adopt RAPID-pro as RAPID unless otherwise specified.

E. In-depth Analysis

1) (RQ2): Different Initial Rankers: As various recommen-

dation scenarios and platforms may adopt different initial

rankers, we explore whether our model can be generalized

to other initial ranking algorithms. In particular, we further

implement SVMRank and LambdaMART as the initial ranker

for comparison. Due to the page limit of the paper, we only

present a utility-based metric (click@10) and a diversity-based

metric (div@10) for the case of ¼ = 0.9 in Table IV. Although

SVMRank and LambdaMART perform worse than DIN in

terms of initial ranking performance, the trend of re-ranking

models on SVMRank and LambdaMART is similar to that on

DIN. The tradeoff between utility and diversity also exists,

and DPP performs poorly on utility as it focuses too much on

diversity. Nevertheless, RAPID can still significantly improve

utility and maintain better performance in diversity than those

relevance-oriented re-ranking algorithms.

2) (RQ3) Ablation Analysis: Four variants of RAPID are

devised to investigate the effectiveness of the designed com-

ponent: RAPID-RNN removes the personalized diversity

estimator. RAPID-mean replaces LSTM in the personalized

diversity estimator with a simple mean aggregation of the

item embedding for each topic. RAPID-det replaces the

probabilistic output approach with the deterministic output
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Fig. 3: Performance of different variants of RAPID.
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Fig. 4: RAPID with different hidden sizes.

approach. RAPID-trans replaces the Bi-LSTM in the listwise

relevance estimator by a transformer structure.

The comparison of these four variants and the original

RAPID is shown in Figure 3. For RAPID-RNN, after removing

the module of personalized diversity estimator, both div@10

and click@10 have dropped significantly, demonstrating that

personalized diversification in re-ranking substantially en-

hances the re-ranking performance. The removal of the proba-

bilistic output approach in RAPID-det introduces a decline in

div@10. It hence verifies the upper confidence bound in the

probabilistic approach can encourage more diverse re-ranking

results while maintaining or improving the utility. Compared

with RAPID, RAPID-mean has a decrease in diversity, which

indicates the LSTM of the personalized diversity estimator

captures the intra-topic interactions and diverse interests in

user history. By changing Bi-LSTM to a transformer, RAPID-

trans obtains similar click@10 to RAPID, with slightly lower

diversity. Possible reasons may be that the transformer relies

on additional position embeddings to extract sequential in-

formation, which is relatively hard to train compared to the

RNN-like structure that inherently takes the order into account.

3) (RQ4) Hyper-parameter Study: Practically, we notice

that the hyper-parameters, especially the hidden size qh and

the length of the behavioral sequences D, influence the final

results. Thus, we conduct grid-search experiments to get a

comprehensive understanding of how those hyper-parameters

affect RAPID’s performances. For the two public datasets, we

report the results with ¼ = 0.9 and DIN as the initial ranker.

As illustrated in Figure 4, for the hidden size, div@10

decreases while click@10 increases as the hidden size grows

on MovieLens-20M and App Store, which also demonstrates

the existence of relevance-diversity tradeoff. While on Taobao,

RAPID suffers from a small dimension (e.g., 8) due to its

limited fitting capability. Yet a large dimension (e.g., 64) may

cause overfitting and also degrades the performance.

As for the length of the behavioral sequences, since the

change in behavior history also affects the performance of the

initial ranker DIN, we only conduct experiments on App Store

dataset to avoid the influence of the initial ranker. As shown in

TABLE V: RAPID with different maximum lengths of behav-

ior sequences on App Store dataset.

click@5 ndcg@5 div@5 rev@5 click@10 ndcg@10 div@10 rev@10

RAPID-3 0.9956 0.6604 3.6477 4.5521 1.0707 0.6793 4.4819 4.9834
RAPID-5 1.0002 0.6693 3.6509 4.5523 1.0786 0.6825 4.4858 4.9909

RAPID-10 1.0013 0.6669 3.6511 4.5439 1.0700 0.6786 4.4809 4.9875

TABLE VI: Training and inference time comparison.

Taobao MovieLens-20M App Store
Train-all

(min)
Train-b

(ms)
Test-b
(ms)

Train-all
(min)

Train-b
(ms)

Test-b
(ms)

Train-all
(min)

Train-b
(ms)

Test-b
(ms)

PRM 35 13.0 9.6 118 20.7 17.5 98 40.7 32.3
DESA 52 16.3 9.8 165 21.7 17.9 137 42.2 33.0
RAPID 32 20.4 10.9 114 26.7 18.4 106 45.6 35.3

Table V, RAPID generally performs best at D = 5. Naturally,

too few behaviors (D = 3) may not be able to carry enough

information for learning the users’ diversity preferences so

that both the utility and the diversity are lower. When D =
10, though diversity remains high, the utility-based metrics

decrease. It may be because long behaviors introduce some

noise and affect the performance.

4) Efficiency Study: In order to quantitatively analyze the

time complexity, we compare RAPID with two state-of-the-

art neural baselines and record their total training time until

convergence (referred to as train-all) and average training

and inference time for each batch (referred to as train-b and

test-b, respectively), summarized in Table VI. Experiments

are conducted on NVIDIA 3080 GPU with 10G memory for

public datasets, and on Tesla V100 with 32G memory for

the App Store dataset. We observe that RAPID converges

faster than DESA and yields a low total training time. Its

training and inference time per batch is comparable to other

baselines. Although RAPID may be slightly slower due to the

modeling of the user behavior history, this is worthwhile since

the utility improvement is considerable (about 2%). Moreover,

the inference time of RAPID can meet the common response

latency requirement of industrial recommender systems, within

50 ms [58].

F. (RQ5) Case Study

In this section, we aim to study whether RAPID is capa-

ble of actually learning the users’ personalized preferences

towards diversity. We therefore select two users from the

MovieLens-20M dataset, one with diverse interests and one

with relatively focused interests, and visualize the genre dis-

tribution of their interested movies in history and top-ranked

movies produced by RAPID.

Figure 5 presents a multi-interest user 1, whose interested

movie covers a wide range of genres. We observe that RAPID

fully explores various combinations of genres that the user is

interested in and appropriately recommends new genres that

the user would like to explore, such as War. The interests

of user 2 in Figure 5 are relatively homogeneous – almost

all the genres favored by user 2 are drama. RAPID captures

this personalized diversity preference well. It explores com-

binations of genres mostly with drama. Besides, user 2 also

reveals that RAPID is aware of users’ preferences for certain

combination types, such as drama and romance. Therefore,
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we can conclude that RAPID is capable of performing re-

ranking with personalized diversification in accordance with

the personal preference over different topics.

V. THEORETICAL ANALYSIS

A. Efficacy Analysis

The goal of RAPID is to maximize the overall utility,

which is a compound of the relevance and the diversity. In

this section, we prove that the performance of RAPID is

guaranteed to produce a near-optimal utility. To make the

analysis manageable and get a more intuitive understanding

of the proposed algorithm, we assume that the user’s click

feedback follows a linear dependent click model (DCM)

[45] as in Section IV-B1, where the click probability is a

linear combination of relevance and diversity and the diversity

coefficient is user-specific. Then the re-ranking function of

RAPID can be simplified to ϕR = ˆ́¦R+b̂¦T dR by replacing

the complicated network structure like Bi-LSTM with a linear

form. Here, R ∈ R
(qu+qv+m)×L is the feature matrix of the

initial ranking list , T ∈ R
(qu+qv)D×m is the personalized

behavior sequences, dR ∈ R
m×L represents the marginal

diversity of the list R in Eq.(5), and ˆ́ ∈ R
qu+qv+m and

b̂ ∈ R
(qu+qv)D are the learned model parameters. Denote by

´∗, b∗ the unknown ground truth parameters.

In particular, the first term ˆ́¦R is the listwise relevance,

and the second term b̂¦T dR is the personalized diversity. The

preference distribution ¹̂ in Eq. (3) is now represented by ¹̂¦ =
b̂¦T which is user-specific, so we have ϕR = ˆ́¦R+ ¹̂¦dR.

For simplicity, let É̂ = [ ˆ́¦, ¹̂¦]¦, ¸ = [R¦, d¦R]
¦, and thus

ϕR can be replaced by ϕR = É̂¦¸. Likewise, we define the

underlying attraction probability ϕ̄R = É∗¸. We follow the as-

sumption in [47] that the order of the termination probabilities

is known. Without loss of generality, let ϵ̄(1) g . . . g ϵ̄(K).
In the later analysis, we focus on the list of top-K items S,

which is selected from the input initial list R. The µ-scaled n
step regret is

Gγ(n) = E

[

∑n

u=1

(

f(S∗

u, ϵ̄u, ϕ̄S∗

u
)− f(Su, ϵ̄u, ϕ̄Su)/µ

)

]

, (12)

where f(S, ϵ, ϕ) = 1 − ∏K

k=1(1 − ϵ(k)ϕS(vk)) is the sat-

isfaction (utility) function for DCM, ϵ(k) is the termination

probability at position k, S∗
u = [v1,∗, . . . , vK,∗] is the opti-

mal re-ranking lists, µ = (1 − 1
e
)max

{

1
K
, 1− 2

K−1 ϕ̄max

}

is the approximation ratio of a greedy method [37], with

ϕ̄max = maxS maxv∈S ϕ̄(v) denoting the maximum attraction

probability. Let pv = maxu=1:n maxk=1:K ϵ̄u(k)− ϵ̄u(k + 1)
be the maximal difference of the termination probability of

two consecutive positions. Frequently used symbols are listed

in Table I. Our main result of the bounded µ-scaled regret of

RAPID is given by Theorem 5.1,

Theorem 5.1: For any Ã > 0, ∥É∗∥2 f 1 and any

s g 1

Ã

√

q0 log

(

1 +
nK

q0Ã2

)

+ 2 log (n) + ∥É∗∥2 ,

we have

Gγ(n) f
2pvsK

2

µ

√

√

√

√

q0n log(1 + nK
q0σ2 )

log(1 + 1
σ2 )

+ 1 ,

where q0 = qu + qv + 2m. The regret has a Õ(q0
√
n) regret

bound, where the Õ notation hides logarithmic factors.

The result has the following characteristics: (1) The theorem

states a gap-free bound, where the factor
√
n is consid-

ered near-optimal w.r.t. n, matching the lower bound up to

polylogarithmic factors [37]. This shows that our algorithm

is capable of achieving satisfying long-term overall utility

(equivalently, minimizing the regret); (2) It depends linearly on

the dimension of the user feature qu, item feature qv , and the

number of topics m, which is standard in linear bandits [59];

(3) This is the first time that we discuss the regret bound of an

algorithm with personalized diversification for multiple clicks,

which generalizes the previous cascade model assumption

[37], [38] to involve multiple clicks and personalization; (4)

Existing re-ranking methods, on the contrary, either solely

optimize relevance or ignore the personalization in diversity,

and thereby could not obtain same satisfying utility.

Proof. To begin with, we bound the one-step regret for a user

u, u = 1, . . . , n. With a slight abuse of notation, here, u
represents a request made by the user at the corresponding time

step. Let Mu = Iq0+
∑u

j=1

∑K

i=1 ¸Sj ,i¸
¦
Sj ,i

, where ¸Sj ,i is the

input of the i-th item of list Sj . We derive the high-probability

upper confidence bound USu
, and its high-probability lower

confidence bound Lu of ϕ̄Su
, from Lemma 1 in [60], for a

re-ranked list Su as

USu
= Proj[0,1]

[

É̂¦¸Su
+ s

√

¸¦Su
M−1

u ¸Su

]

,

LSu
= Proj[0,1]

[

É̂¦¸Su
− s

√

¸¦Su
M−1

u ¸Su

]

.

Note that Proj[0,1] projects each real number onto inter-

val [0, 1], and s > 0 controls the degree of the explo-

ration/uncertainty. We further denote the confidence radius

Äu(vk) = s
√

¸Su
(k)¦M−1

u ¸Su
(k) for list Su.



We define a good event Eu = {LSu
f ϕ̄Su

f USu
, ∀Su}

that the attraction probability is bounded by the upper and

lower bound, and let Ēu be the complement of Eu. Then

E

[

f(S∗
u, ϵ̄u, ϕ̄Su

)− f(Su, ϵ̄u, ϕ̄Su
)/µ

]

f P (Ēu−1)+

P (Eu−1)E[f(S
∗
u, ϵ̄u, ϕ̄Su

)− f(Su, ϵ̄u, ϕ̄Su
)/µ|Eu−1], (13)

which is simply due to f(S∗
u, ϵ̄u, ϕ̄Su

)−f(Su, ϵ̄u, ϕ̄Su
)/µ f 1.

As described in Section III-D2, the re-ranked list of RAPID

is obtained by selecting the top-K items sorted by the upper

confidence bound. Therefore, due to LSu
f ϕ̄Su

f USu
for

any Su under event Eu, and f(S, ϵ, ϕ) is a non-decreasing

function w.r.t. ϕ, we have f(S∗
u, ϵ̄u, ϕ̄S∗

u
) f f(S∗

u, ϵ̄u, US∗

u
).

On the other hand, since Su is computed based on a µ-

approximation algorithm, by definition f(S∗
u, ϵ̄u, US∗

u
) f

f(Su, ϵ̄u, USu
)/µ. Combining the above two inequalities, we

have f(S∗
u, ϵ̄u, ϕ̄S∗

u
) f f(Su, ϵ̄u, USu

)/µ. And thus

f(S∗
u, ϵ̄u, ϕ̄S∗

u
)− f(Su, ϵ̄u, ϕ̄Su

)/µ f
1

µ

(

f(Su, ϵ̄u, USu
)− f(Su, ϵ̄u, ϕ̄Su

)
)

. (14)

Building upon previous discussions, when Eu−1 holds, we

have

E

[

f(Su, ϵ̄u, USu
)− f(Su, ϵ̄u, ϕ̄Su

)|Eu−1

]

(a)

fE

[

K
∑

k=1

ϵ̄u(k)USu
(vk)−

K
∑

k=1

ϵ̄u(k)ϕ̄Su
(vk)|Eu−1

]

=E

[

K
∑

k=1

ϵ̄u(k)(USu
(vk)− ϕ̄Su

(vk))|Eu−1

]

=E

[

K
∑

i=1

(ϵ̄u(i)− ϵ̄u(i+ 1))

i
∑

k=1

(USu
(vk)− ϕ̄Su

(vk))|Eu−1

]

(b)

fpvE
[

K
∑

i=1

i
∑

k=1

(Uu(vk)− Lu(vk))|Eu−1

]

f2pvE
[

K
∑

i=1

i
∑

k=1

Äu(vk)|Eu−1

]

,

where ϵ̄u(K+1) = 0, and pv = maxu=1:n maxk=1:K ϵ̄u(k)−
ϵ̄u(k + 1) denotes the maximal difference of termination

weights between two consecutive positions for users. The in-

equality (a) holds by the fact that
∑K

k=1 xk g 1−ΠK
k=1(1−xk)

for x ∈ [0, 1]K , and USu
(vk) denotes the upper bound of item

vk in the list Su. Inequality (b) is derived by definition of pv
and ϕ̄u(vk) g Lu(vk). The last inequality follows from the

definitions of Lu and Uu.

Applying Eq. (14) and substitute the above inequality back

into Eq. (13) we have

Gγ(n)

fP (Eu−1)
2pv
µ

E

[

n
∑

u=1

K
∑

i=1

i
∑

k=1

Äu(vk)|Eu−1

]

+
n
∑

u=1

P (Ēu−1)

f2pv
µ

E

[

n
∑

u=1

K
∑

i=1

i
∑

k=1

Äu(vk)
]

+

n
∑

u=1

P (Ēu−1) .

The regret bound can be obtained by adapting the worst-

case bound on
∑n

u=1

∑K

k=1 Äu(vk) from [41], and a bound

on P (Ē). In particular, our
∑n

u=1

∑K

i=1

∑i

k=1 Äu(vk) f
K

∑n

u=1

∑K

k=1 Äu(vk).
Lemma 5.2: (Lemma 2 in [41]) The following worst-case

bound holds

n
∑

u=1

K
∑

k=1

Äu(vk) f K

√

√

√

√

q0n log(1 + nK
q0σ2 )

log(1 + 1
σ2 )

. (15)

Lemma 5.3: (Lemma 3 in [41]) For any u, Ã > 0, ¶ ∈ (0, 1),
and

s g 1

Ã

√

q0 log

(

1 +
nK

q0Ã2

)

+ 2 log

(

1

¶

)

+ ∥É∗∥2,

we have P (Ēu) f ¶.

Specifically, let ¶ = 1/n, we have P (Ēu) f 1/n for all

u. Then substituting the worst-case bound back and applying

Lemma 3 yields our claimed result.

B. Efficiency Analysis

Then we analyze the efficiency of RAPID. The main com-

putational cost of RAPID consists of two parts: the listwise

relevance estimator and the personalized diversity estimator.

Let c0 be the constant of one-step inference time for LSTM.

Then the listwise relevance estimator achieves a O(c0L)
complexity for each request, where L is the maximum length

of the initial ranking list. For the additional personalized

diversity estimator, the complexity is O(c0mD), where m
is the number of topics, and D is the maximum length of

behavioral sequences. Therefore, the overall complexity of

RAPID is O(c0(L+mD)). Our experimental study shows that

good performance can be achieved at D = 5 or 10, and the

number of topics m is usually less than 100. Therefore, the

computation cost is inexpensive. Moreover, the computation

of m behavioral sequences can be made parallel to further

accelerate the process.

VI. CONCLUSIONS

In this work, we provide a new perspective to rethink the

optimization of the utility for re-ranking. The utility of the

list is a comprehensive concept and depends not only on

the relevance of items but also on the list diversity. Purely

improving relevance or diversity does not necessarily bring

the optimal utility, but recommending diverse and fresh items

originating from the users’ diversity preference shows the

potential of increasing the utility. As a consequence, we pro-

pose a novel method, RAPID, for re-ranking with personalized

diversification. Instead of equally increasing diversity for all

users, we propose to provide diverse re-ranking lists that are

aware of individual users’ diversity interests. We exploit rich

user behavior history and model the user-specific preference

distribution over all topics. The proposed framework jointly

learns the relevance and the diversity, and automatically man-

ages the tradeoff between them. Extensive experiments show

that RAPID outperforms state-of-the-art algorithms, achieving

the highest utility and the best relevance-diversity tradeoff.
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